Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2,829)
  • 1998  (566)
  • 1995  (2,263)
  • Life and Medical Sciences  (2,828)
  • Nuclear reactions
  • 101
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 484-499 
    ISSN: 0730-2312
    Keywords: YY1 ; zinc finger ; high-molecular-weight complex ; plasmid transfection ; nuclear matrix association ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: YY1 is a zinc finger-containing transcription factor that can both repress and activate transcription. YY1 appears to use multiple mechanisms to carry out its diverse functions. Recently, it was observed that YY1 can exist in multiple nuclear compartments. In addition to being present in the nuclear extract fraction, YY1 is also a component of the nuclear matrix. We show that YY1 can be sequestered in vivo into a high-molecular-weight complex and can be dislodged from this complex either by treatment with formamide or by incubation with an oligonucleotide containing the YY1 DNA binding site sequence. By transfecting plasmids expressing various YY1 deletion constructs and subsequent nuclear fractionation, we have identified sequences necessary for association with the nuclear matrix. These sequences (residues 256-340) co-localized with those necessary for in vivo sequestration of YY1 into the high-molecular-weight complex. We have also characterized YY1 sequences necessary for repression of activated transcription (residues 333-371) and those necessary for masking of the YY1 transactivation domain (residues 371-397). Sequences that repress activated transcription partially overlap YY1 sequences necessary for association with the nuclear matrix. However, these sequences are distinct from those that appear to mask the YY1 transactivation domain. The potential role of nuclear matrix association in controlling YY1 function is discussed. J. Cell. Biochem. 68:484-499, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 511-524 
    ISSN: 0730-2312
    Keywords: actin ; permeability ; reoxygenation ; signal transduction ; cytoskeletal rearrangement ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hypoxia/reoxygenation injury to cultured endothelial cells results in cytoskeletal rearrangement and second messenger activation related to increased monolayer junctional permeability. Cytoskeletal rearrangement by reactive oxygen species may be related to specific activation of the phospholipase D (PLD) pathway. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) or metabolites of the PLD pathway for 1-60 min. Changes in cAMP levels, Ca2+ levels, PIP2 production, filamin distribution, and intercellular gap formation are then quantitated. H2O2-induced filamin translocation from the membrane to the cytosol occurs after 1-min H2O2 treatment, while intercellular gap formation significantly increases after 15 min. H2O2 and phosphatidic acid exposure rapidly decrease intracellular cAMP levels, while increasing PIP2 levels in a Ca2+-independent manner. H2O2-induced cAMP decreases are prevented by inhibiting phospholipase D. H2O2-induced cytoskeletal changes are prevented by inhibiting phospholipase D, phosphatidylinositol-4-phosphate kinase, phosphoinositide turnover, or by adding a synthetic peptide that binds PIP2. These data indicate that metabolites produced downstream of H2O2-induced PLD activation may mediate filamin redistribution and F-actin rearrangement. J. Cell. Biochem. 68:511-524, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 19-29 
    ISSN: 0730-2312
    Keywords: interleukin-1 ; reactive oxygen species ; nitric oxide ; c-fos ; collagenase ; chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1) is implicated in cartilage destruction in arthritis through promotion of matrix metalloproteinase production. Upregulation of collagenase gene expression by IL-1 is known to require the transactivators Fos and Jun. Recently, reactive oxygen species (ROS) have been suggested to act as intracellular signaling molecules mediating the biological effects of cytokines. Here, we demonstrated ROS production by IL-1-stimulated bovine chondrocytes and that neutralizing ROS activity by the potent antioxidant, N-acetylcysteine, or inhibiting endogenous ROS production by diphenyleneiodonium (DPI), significantly attenuated IL-1-induced c-fos and collagenase gene expression. The inhibitory effect of DPI implicates enzymes such as NADPH oxidase in the endogenous production of ROS. Chondrocytes were also found to produce nitric oxide (NO) upon IL-1 stimulation. That NO may mediate part of the inducing effects of IL-1 was supported by the observation that L-NG-monomethylarginine, a NO synthase inhibitor, partially inhibited IL-1-regulated collagenase expression. Moreover, treatment of chondrocytes with the NO-producing agent, S-nitroso-N-acetylpenicillamine, was sufficient to induce collagenase mRNA levels. In summary, our results suggest that ROS released in response to IL-1 may function as second messengers transducing extracellular stimuli to their targets in the nucleus, leading to augmentation of gene expression. J. Cell. Biochem. 69:19-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    ISSN: 0730-2312
    Keywords: TGF-α ; antisense oligonucleotides ; head and neck cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interruption of an autocrine growth pathway involving TGF-α and EGFR may inhibit tumor growth and improve survival in head and neck cancer patients. We previously demonstrated that biopsy specimens and established cell lines from patients with squamous cell carcinoma of the head and neck (SCCHN) overexpress TGF-α and its receptor, epidermal growth factor receptor (EGFR) at both the mRNA and protein levels. Protein localization studies showed that TGF-α and EGFR are produced by the same epithelial cells in tissues from head and neck cancer patients further supporting a role for this ligand-receptor pair in an autocrine growth pathway. To confirm that TGF-α contributes to autocrine growth, we examined the effect of down regulation of TGF-α protein on SCCHN cell proliferation. Treatment of 6 SCCHN cell lines with antisense oligodeoxynucleotides targeting the translation start site of human TGF-α mRNA decreased TGF-α protein production by up to 93% and reduced cell proliferation by a mean of 76.2% compared to a 9.7% reduction with sense oligonucleotide (range P〈0R 〉 = 0.036-0.0001). TGF-α antisense oligonucleotide exposure also decreased TGF-α protein levels in normal oropharyngeal mucosal epithelial cells, however their growth rate was not affected. These findings indicate that TGF-α is participating in an autocrine signaling pathway in transformed, but not in normal mucosal epithelial cells, that promotes proliferation. J. Cell. Biochem. 69:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 81-86 
    ISSN: 0730-2312
    Keywords: cell communication ; osteoblasts ; stromal cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells. J. Cell. Biochem. 69:81-86, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 104-116 
    ISSN: 0730-2312
    Keywords: mRNA export ; cell cycle ; gene transfection ; cultured mammalian cells ; hnRNP L ; nuclear transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104-116, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 282-290 
    ISSN: 0730-2312
    Keywords: estrogen modulation ; osteoblastic cells ; plasma membrane receptors ; nuclear receptors ; gap junction communication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Two osteoblastic cell populations, calvarial and marrow stromal cells, were exposed to estrogen derivatives in vitro. The hormonal effect was monitored by following intracellular Ca+2 levels [Ca+2]i and gap-junction communication. We measured fast changes in intracellular Ca+2 levels in response, of these cells, to the steroid hormones. The changes were dose dependent revealing maximal activity at 100 pM by 17-β-Estradiol and 1 nM by estradiol-CMO. Additionally, the effect of estrogen, on functional coupling of the cells, was measured using fluorescence dye migration and counting the number of neighboring cells coupled by gap junctions. An uncoupling effect was demonstrated in response of these cells to estrogen treatment. The quick stereospecific effect was achieved in the presence of 17-β-estradiol but not in the presence of 17-α-estradiol. These results suggest the involvement of plasma membrane receptors in addition to the already known nuclear receptors in transducing the hormone effects in the osteoblastic cells. J. Cell. Biochem. 69:282-290, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    ISSN: 0730-2312
    Keywords: butyrate ; isobutyramide ; prostate cancer ; LNCaP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Progression to androgen independence remains the main obstacle to improving survival and quality of life in patients with advanced prostate cancer. Induction of differentiation may serve as a rational basis for prevention of progression to androgen independence by modulating gene expression activated by castration or upregulated during androgen-independent progression. The objectives of this study were to characterize the in vitro effects of sodium butyrate on human prostate cancer cell growth, PSA gene expression, and differentiation in the LNCaP tumor model and to determine whether tumor progression in vivo is delayed by isobutyramide, an orally bioavailable butyrate analogue with a longer half-life. The effects of isobutyramide on LNCaP tumor growth and serum PSA levels in both intact and castrate male mice were compared to controls. At concentrations 〉 1 mM, butyrate induced dose-dependent changes towards a more differentiated phenotype, G1 cell cycle arrest, and an 80% decrease in LNCaP cell growth rates. PSA gene expression was increased threefold by butyrate, indicative of differentiation-enhanced gene expression. The half-life of isobutyramide in athymic mice was determined by gas chromatography to be 4 h. During a 4 week period in intact-placebo mice, tumor volume and serum PSA increased 4.1- and 6.6-fold, respectively, compared to twofold and 2.7-fold increases in tumor volume and serum PSA in intact-treated mice. During a 7 week period in castrate-placebo mice, tumor volume and serum PSA levels increased 2.4-fold and fourfold, respectively, compared to a 50% reduction in tumor volume and a twofold increase in serum PSA above nadir levels in castrate mice treated with adjuvant isobutyramide. Isobutyramide treatment induced pronouced morphological changes in LNCaP tumor cells, with loss of defined nucleoli and dispersion of chromatin distribution. LNCaP tumor PSA mRNA levels actually increased threefold, indicative of differentiation-enhanced gene expression. This study demonstrates that butyrate causes LNCaP cell cycle arrest and increased PSA gene expression, both indicative of differentiation. The combination of castration and adjuvant isobutyramide was synergistic in delaying tumor progression. Decreased tumor cell proliferation and increased PSA gene expression induced by isobutyramide results in disconcordant changes in serum PSA and tumor volume and reduces the utility of serum PSA as a marker of response to therapy. J. Cell. Biochem. 69:271-281, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 326-335 
    ISSN: 0730-2312
    Keywords: copper ; human endothelial cells ; angiogenesis ; growth factors ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Copper ions stimulate proliferation of human umbilical artery and vein endothelial cells but not human dermal fibroblasts or arterial smooth muscle cells. Incubation of human umbilical vein endothelial cells for 48 h with 500 μM CuSO4 in a serum-free medium in the absence of exogenous growth factors results in a twofold increase in cell number, similar to the cell number increase induced by 20 ng/ml of basic fibroblast growth factor under the same conditions. Copper-induced proliferation of endothelial cells is not inhibited by 10% fetal bovine serum or by the presence of antibodies against a variety of angiogenic, growth, and chemotactic factors including angiogenin, fibroblast growth factors, epidermal growth factor, platelet-derived growth factor, tumor necrosis factor-α, transforming growth factor-β, macrophage/monocyte chemotactic and activating factor, and macrophage inflammatory protein-1α. Moreover, despite the previous observations that copper increased total specific binding of 125I-angiogenin to endothelial cells, binding to the 170 kDa receptor is not changed; hence, the mitogenic activity of angiogenin is not altered by copper. Copper-induced proliferation, along with early reports that copper induces migration of endothelial cells, may suggest a possible mechanism for the involvement of copper in the process of angiogenesis. J. Cell. Biochem. 69:326-335, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 316-325 
    ISSN: 0730-2312
    Keywords: osteoprogenitors ; mineralization ; marrow stroma ; Src ; tyrosine kinase dexamethasone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Src protein is essential for the regulation of bone turnover primarily via bone resorption because it is required in osteoclast differentiation and function. We followed temporal changes of Src protein abundance in marrow stromal cells induced to mineralize by dexamethasone (DEX), growth in cold temperature, or both. Given the tyrosine kinase function of Src and its numerous substrates, profiles of phosphotyrosine-containing proteins were followed as well. On day 11 of stimulation, specific alkaline phosphatase (ALP) activity at 30°C decreased under DEX relative to 37°C cultures, in accord with increased cell counts. Mineralization per well under DEX increased by 25% at 37°C, whereas at 30°C it increased by more than threefold regardless of the DEX stimulation. At 30°C, on a per cell basis mineralization increased 2.5 and 3 times with and without DEX, respectively. Cultures at 37°C showed a general drop per cell of many phosphotyrosine-containing proteins on day 3 relative to days 1 and 2 in both DEX-stimulated and nonstimulated cultures; several proteins did recover (recuperate) thereafter. On days 1 and 2, the phosphotyrosine signal was higher in several proteins under DEX stimulation; this trend became inverted after day 3. The changes in abundance per cell of Src protein (pp60src) followed a similar trend, and in addition a truncated Src molecule, p54/52src, was detected as a putative cleavage product presumably representing its carboxy terminus. The pp60src was most abundant, relative to its truncated product, in day 7 nonstimulated cultures, whereas under DEX stimulation the truncated species pp54/52src showed the highest relative abundance on days 7. At 30°C, DEX stimulation accentuated the increase in Src protein on day 3, showed no change on day 7, and returned to increase Src protein on day 10. Potassium ionophorvalinomycin, considered to select against mineralizing osteoprogenitors at 30°C, showed on day 10 in the absence of DEX a relative increase in truncated Src protein compared to both DEX-stimulated and nonstimulated cultures in the absence of valinomycin. On day 7 of DEX stimulation, the presence of valinomycin resulted in low p54/52src. Among phosphotyrosine-containing proteins, a 32-34 kDa band, as yet unidentified, showed the most concordant changes with mineralization induction. P32-34 decreased by DEX on days 2 and 8 and increased by low temperature alone or combined with DEX on day 3. On day 7, p32-34 did not change under DEX, but valinomycin selected cells with less phoshpotyrosine-containing p32-34. Taken together, high Src abundance at the start of osteogenic induction followed by a decrease 1 week later is probably related to energy metabolism-dependent induction of mineralization. This is in temporal accord with the increase in Src truncation and fluctuation in mitochondrial membrane potential (which affects mineralization). The reported binding of amino-terminal Src oligopeptide to p32 ADP/ATP carrier in the mitochondrial inner membrane raises the question of its possible involvement in mitochondria-regulated mineralization. J. Cell. Biochem. 69:316-325, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; CBFa1 ; differentiation ; osteoblasts ; regulatory elements ; transforming growth factor-β ; receptor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Organization of the transforming growth factor-β (TGF-β) type I receptor (TRI) promoter predicts constitutive transcription, although its activity increases with differentiation status in cultured osteoblasts. Several sequences in the rat TRI promoter comprise cis-acting elements for CBFa (AML/PEBP2α) transcription factors. By gel mobility shift and immunological analyses, a principal osteoblast-derived nuclear factor that binds to these sites is CBFa1(AML-3/PEBP2αA). Rat CBFa1 levels parallel expression of the osteoblast phenotype and increase under conditions that promote mineralized bone nodule formation in vitro. Fusion of CBFa binding sequence from the TRI promoter to enhancer-free transfection vector increases reporter gene expression in cells that possess abundant CBFa1, and overexpression of CBFa increase the activity of transfected native TRI promoter/reporter plasmid. Consequently, phenotype-restricted use of cis-acting elements for CBFa transcription factors can contribute to the high levels of TRI that parallel osteoblast differentiation and to the potent effects of TGF-β on osteoblast function. J. Cell. Biochem. 69:353-363. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 364-375 
    ISSN: 0730-2312
    Keywords: IGF ; IGFBP ; zinc ; IGFBP-3 ; IGFBP-5 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of multivalent cations on [125I]-IGF binding to cell-associated IGFBPs was investigated using human fibroblasts. The major cell-associated binding site for [125I]-IGF-I is IGFBP-3 and for [125I]-IGF-II are IGFBP-3 and IGFBP-5. Lanthanum and chromium did not affect either [125I]-IGF-I or [125I]-IGF-II binding to cell-associated IGFBPs. By contrast, zinc (Zn2+), gold (Au3+), and cadmium (Cd2+) depressed binding of both ligands. Ligand binding resulted in nonlinear Scatchard plots. Assuming a pre-existent asymmetric model with high- (KaHi) and low- (KaLo) affinity sites, Zn2+ lowered both KaHi and KaLo. Au3+ eliminated KaHi. Assuming that the nonlinear plots were caused by ligand-induced negative cooperativity, Zn2+ and Cd2+ lowered both Ke and Kf (affinity of unoccupied and saturated IGFBPs, respectively). Au3+ eliminated Ke and reduced Kf. Zn2+ was active at serum levels in lowering IGF binding. Zinc, gold, and cadmium bind to similar regions within proteins (a zinc-binding motif) indicating similar mechanisms of action. A zinc-binding motif is present in the IGFBPs, but not in the IGFs. We demonstrate for the first time that the trace nutrient zinc and related multivalent cations decrease IGF binding to fibroblast-associated IGFBPs by lowering the affinity of the IGF-IGFBP interaction. J. Cell. Biochem. 69:364-375, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 425-435 
    ISSN: 0730-2312
    Keywords: perforin ; cell cycle ; apoptosis ; T lymphocyte ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cytotoxic T lymphocytes secrete a pore-forming cytolysin, perforin, that damages membranes of target cells. They also ligate Fas receptors on target cells and provoke apoptotic death. A20 (B lymphoma) and P815 (mastocytoma) cell lines were examined for their susceptibility to perforin-mediated lysis and to Fas-induced apoptosis after blockade of the cell cycle at the G1/S interface. Cells were arrested at the G1/S interface by inhibition of DNA synthesis with thymidine or aphidicolin. Subsequently, the treated cells were incubated either with CTL cytotoxic granules or the Fas-specific monoclonal antibody Jo-2. We show that arrest of the cell cycle at the G1/S interface markedly reduced the susceptibility of target cells to perforin-mediated lysis. In contrast, growth arrest with thymidine or aphidicolin increased susceptibility of A20 and P815 cells to Fas-mediated apoptosis. Susceptibility to lysis by intact CTLs was not affected significantly by blockade of target cells with aphidicolin or thymidine. When cells surviving exposure to perforin-containing granules were isolated on Ficoll density gradients and cell-cycle profiles were examined by flow cytometry, the ratio of G1 to G2cells increased among the survivors exposed to granules in contrast to controls incubated with buffer alone. The data suggest that cells in G1 phase of the cell cycle are less susceptible to the perforin pathway than cells in G2and S phases but are more susceptible to the Fas pathway. J. Cell. Biochem. 69:425-435, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    ISSN: 0730-2312
    Keywords: YKL40 ; purification ; guinea pig ; chondrocytes ; biochemical characterization ; regulation ; insulin-like growth factors ; osteoarthritis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of this study was to purify, characterize, and study the regulation at the chondrocyte level of the guinea pig (gp) homologue of human (R) YKL40, a putative marker of arthritic disorders. Studying YKL40 in guinea pigs is of particular interest, as age-related osteoarthritis develops in this species spontaneously. Both N-terminal sequencing and total amino acid composition of gpYKL40 purified from the secretion medium of cultured articular chondrocytes indicate a high degree of identity with hYKL40. gpYKL40 was found to contain complex N-linked carbohydrate, as demonstrated by N-glycosidase F and endoglycosidase F digestion. Isoelectric focusing demonstrated the presence of a major band at pI 6.7. The secretion of gpYKL40 by confluent articular chondrocytes in the extracellular medium was studied by immunoblotting. gpYKL40 was released by chondrocytes continuously over a 7 day period and did not appear to be degraded by proteinases, as its signal intensity in cell-free medium at 37°C did not decrease with time. Thus, gpYKL40 displays high stability and accumulates in extracellular medium without reaching a steady-state level. Among the main factors known to regulate cartilage metabolism, IL-1β, TNF-α, bFGF, or 1,25(OH)2D3 did not alter the basal level of gpYKL40, and retinoic acid had a slight inhibitory effect; TGF-β and IGF-I and -II dose-dependently and inversely modulated this basal level. TGF-β at 5 ng/ml decreased extracellular gpYKL40 2.9-fold, whereas IGF-I and IGF-II at 50 ng/ml increased extracellular gpYKL40 3.6- and 3.4-fold, respectively. The present biochemical and biological findings give new insights for studying the function of YKL40 in cartilage. J. Cell Biochem. 69:414-424, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 463-469 
    ISSN: 0730-2312
    Keywords: Adriamycin ; rat hepatoma ; ρ° cells ; multidrug resistance ; P-glycoprotein ; Sandoz SDZ PSC 833 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Rat hepatoma cells lacking mitochondrial DNA (ρ° cells) were used as a model system to examine the possible roles of mitochondrial DNA as a target for the DNA-acting anticancer drug Adriamycin (doxorubicin). The ρ° cells were 45-fold less sensitive to Adriamycin than the parental ρ+ cells containing mitochondrial DNA. Other non-DNA-acting drugs also exhibited similar behaviour, and this was shown to be due to a multidrug resistance (MDR) phenotype in the ρ° cells. This was indicated by confocal microscopy where ρ+ cells exhibited thirteenfold higher cellular levels of Adriamycin than ρ° cells. Upregulation (tenfold) of P-glycoprotein in ρ° cells was also confirmed by Northern dot blot analysis. Since the MDR phenotype is present in ρ° cells and upregulation of P-glycoprotein is maintained in these cells, ρ° cells are not a good model system for drug-DNA studies (where the drug is susceptible to extrusion by P-glycoprotein), and any such results obtained with this system must be treated with considerable caution. J. Cell. Biochem. 69:463-469, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 470-482 
    ISSN: 0730-2312
    Keywords: enterocytes ; 1,25(OH)2-vitamin D3 ; tyrosine phosphorylation ; MAP kinase activation ; VDRnuc ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steroid hormone 1α,25(OH)2-vitamin D3 (1α,25(OH)2D3) generates biological responses in intestinal and other cells via both genomic and rapid, nongenomic signal transduction pathways. We examined the hypothesis that 1α,25(OH)2D3 action in chick enterocytes may be linked to pathways involving tyrosine phosphorylation. Brief exposure of isolated chick enterocytes to 1α,25(OH)2D3 demonstrated increased tyrosine phosphorylation of several cellular proteins (antiphosphotyrosine immunoblots of whole cell lysates) with prominent bands at 42-44, 55-60, and 105-120 Kda. The 42-44 Kda bands comigrated with mitogen-activated protein (MAP) kinase (immunoblotting with anti-MAP kinase antibody) The response occurred within 30 s, peaked at 1 min, and was dose-dependent (0.01-10 nM), with maximal stimulation at 1 nM (three- to fivefold). This effect was specific for 1α,25(OH)2D3 since its metabolic precursors 25(OH)D3and vitamin D3 did not increase MAP kinase tyrosine phosphorylation. The tyrosine kinase inhibitor, genistein, blocked 1α,25(OH)2D3-induced tyrosine phosphorylation of MAP kinase, while staurosporine, a PKC inhibitor, attenuated the hormone's effects by 30%. We have evaluated the ability of 1α,25(OH)2D3 analogs, which have complete flexibility around the 6,7 carbon-carbon bond (6F) or which are locked in either the 6-s-cis (6C) or the 6-s-trans(6T) shape(s), to activate MAP kinase. Thus, two 6F and one 6C analog stimulated while one 6T analog did not stimulate MAP kinase tyrosine phosphorylation. In addition, 1β,25(OH)2D3, a known antagonist of 1α,25(OH)2D3-mediated rapid responses, blocked the hormone effects on MAP kinase. We conclude that 1α,25(OH)2D3 and analogs which can achieve the 6-s-cis shape (6F and 6C) can increase tyrosine phosphorylation and activation of MAP kinase in chick enterocytes. J. Cell. Biochem. 69:470-482, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 490-505 
    ISSN: 0730-2312
    Keywords: nucleolus ; nuclear import ; ribosomal protein L5 ; ribonucleoprotein particles ; ribosome assembly ; TFIIIA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In Xenopus laevis oocytes, 5S RNA is stored in the cytoplasm until vitellogenesis, at which time it is imported into the nucleus and targeted to nucleoli for ribosome assembly. This article shows that throughout oogenesis there is a pool of nuclear 5S RNA which is not nucleolar-associated. This distribution reflects that of oocyte-type 5S RNA, which is the major 5S RNA species in oocytes; only small amounts of somatic-type, which differs by six nucleotides, are synthesized. Indeed, 32P-labeled oocyte-type 5S RNA showed a degree of nucleolar localization similar to endogenous 5S RNA (33%) after microinjection. In contrast, 32P-labeled somatic-type 5S RNA showed significantly enhanced localization, whereby 70% of nuclear RNA was associated with nucleoli. A chimeric RNA molecule containing only one somatic-specific nucleotide substitution also showed enhanced localization, in addition to other somatic-specific phenotypes, including enhanced nuclear import and ribosome incorporation. The distribution of 35S-labeled ribosomal protein L5 was similar to that of oocyte-type 5S RNA, even when preassembled with somatic-type 5S RNA. The distribution of a series of 5S RNA mutants was also analyzed. These mutants showed various degrees of localization, suggesting that the efficiency of nucleolar targeting can be influenced by many discrete regions of the 5S RNA molecule. J. Cell. Biochem. 69:490-505, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    ISSN: 0730-2312
    Keywords: apoptosis ; p53 ; pRb2/p130 ; E2F ; transcriptional control ; leukemia ; protein phosphatases ; colon cancer ; retinoblastoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A significant portion of published literature is dedicated to describing the cloning and the characterization of proteins involved in the progression of the cell cycle, which govern cell growth both in cancer and normal ontogenesis. With this abundance of information, the cascading pathways of molecular events that occur in the cell cycle are proving to be exceedingly complicated. The purpose of this conference was to attract the leading clinical and basic science investigators in the growth control field with a final goal to determine how this current wealth of knowledge can be used to impact upon patient care and management by the design of novel adjuvant therapeutics specifically targeted at tumor cells and the identification of molecular diagnostic and/or prognostic markers in an efficient and cost effective manner. J. Cell. Biochem. 70:1-7, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 489-506 
    ISSN: 0730-2312
    Keywords: hematopoiesis ; protein interaction ; EMSA ; nucleolin ; nucleophosmin/NPM/B23 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The human myeloid nuclear differentiation antigen, MNDA, is expressed only in myelomonocytic and a subset of B lymphoid hematopoietic cells. MNDA is uniformly distributed throughout the interphase cell nucleus and associates with chromatin, but does not bind specific DNA sequences. We recently demonstrated that MNDA binds nucleolin and nucleophosmin/NPM/B23 and both of these nuclear proteins bind the ubiquitous zinc finger transcription factor YY1. Investigations of the possible effect of MNDA on the interaction between YY1 and NPM, showed that MNDA bound YY1 directly under both in vitro and in vivo conditions. The MNDA-YY1 interaction enhanced the affinity of YY1 for its target DNA and decreased its rate of dissociation. The N-terminal half (200 amino acids) of MNDA was sufficient for maximum enhancement of YY1 DNA binding and a portion of this sequence was responsible for binding YY1. MNDA participated in a ternary complex with YY1 and the YY1 target DNA element. The results show that MNDA affects the ability of YY1 to bind its target DNA sequnce and that MNDA participates in a ternary complex possibly acting as a cofactor to impart lineage specific features to YY1 function. J. Cell. Biochem. 70:489-506, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 507-516 
    ISSN: 0730-2312
    Keywords: type X collagen; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Collagen X is expressed specifically in hypertrophic chondrocytes within cartilage that is undergoing endochondral ossification. The chicken collagen X gene is transcriptionally regulated, and under the control of multiple cis elements within the distal promoter region (-4,442 to -558 base pairs from the transcription start) as well as the proximal region (-558 to +1). Our previous data (LuValle et al., [1993] J. Cell Biol. 121:1173-1179) demonstrated that the proximal sequence directed high reporter gene activity in the three cell types tested (hypertrophic chondrocytes, immature chondrocytes, and fibroblasts), while distal elements acted in an additive manner to repress the effects of the proximal sequence on reporter gene activity in non-collagen X expressing cells only (immature chondrocytes and fibroblasts). We show here that elements within the proximal sequence (nucleotides -557 to -513) are necessary for the cell-specific expression of type X collagen by hypertrophic chondrocytes. These elements bind to proteins of 100 kDa in all three cell types, and 47 kDa in non-collagen X expressing cells. Reporter gene activity in hypertrophic chondrocytes is reduced to the levels seen in non-collagen X-expressing cells in the absence of these elements. J. Cell. Biochem. 70:507-516, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    ISSN: 0730-2312
    Keywords: scleraxis ; transcription factor ; FGF ; chondrocyte ; bHLH ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Scleraxis is a basic helix-loop-helix-type transcription factor that is expressed in sclerotome. Fibroblast growth factor (FGF) is one of the cytokines produced by the cells in skeletal tissues and is a potent modulator of skeletogenesis. The aim of this study was to examine the effects of FGF on the expression of scleraxis in chondrocyte-like cells, TC6. In these cells, scleraxis mRNA was constitutively expressed as a 1.2kb message at a high level in contrast to its low levels of expression in fibroblast-like cells or osteoblast-like cells. Upon treatment with FGF, scleraxis mRNA level was decreased within 12 h. This effect was at its nadir at 24 h and the scleraxis mRNA level returned to its base line level by 48 h. The FGF effect was maximal at 1 ng/ml. FGF effects on scleraxis were blocked by actinomycin D but not by cycloheximide, suggesting the involvement of transcriptional events that do not require new protein synthesis. The FGF effects on scleraxis were blocked by genistein, suggesting the involvement of tyrosine kinase in the post-receptor signaling. TGFβ treatment of TC6 cells enhanced scleraxis mRNA expression; however, combination of the saturation doses of FGF and TGFβ resulted in suppression of scleraxis mRNA level. BMP2 also suppressed scleraxis mRNA expression in TC6 cells and no further suppression was observed in combination with FGF. These results indicate that scleraxis is expressed in chondrocyte-like TC6 cells and it is one of the targets of FGF action in these cells. J. Cell. Biochem. 70:468-477. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    ISSN: 0730-2312
    Keywords: PTHrP ; PTH/PTHrP receptor ; estrogen ; ovariectomy ; kidney ; rat ; in vivo ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of the present study was to test the hypothesis that the decreased renal tubular reabsorption of calcium observed in estrogen deficiency is associated with a local regulation of either PTHrP or PTH/PTHrP receptor genes in the kidney. Rats were randomly sham-operated (S) or ovariectomized receiving either vehicule (OVX) or 4 μg E2/kg/day (OVX+E4) or 40 μg E2/kg/d (OVX+E40) during 14 days using alzet minipumps. Plasma PTH and calcium levels were lower in untreated OVX animals than in all other groups (P 〈 0.01). Plasma PTH was higher in OVX+E40 than in OVX+E4 (P 〈 0.05). PTHrP mRNA expression in the kidney was unaffected by ovariectomy but was increased in OVX+E40 (0.984 ± 0.452 for PTHrP/GAPDH mRNAs expression vs. 0.213 ± 0.078 in sham, P 〈 0.01). PTH/PTHrP receptor mRNA expression and the cAMP response of renal membranes to PTH were unaffected by ovariectomy and estrogen substitution. In conclusion, renal PTHrP and PTH/PTHrP receptor mRNAs are not modified by ovariectomy. However, 17β-estradiol increases renal expression of PTHrP mRNA without evident changes in its receptor expression and function. This may help to explain the pharmacological action of estrogen in the kidney, especially how it prevents the renal leak of calcium in postmenopausal women. J. Cell. Biochem. 70:84-93, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 110-120 
    ISSN: 0730-2312
    Keywords: myosin heavy chains ; rat heart ; naturally occurring antisense mRNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Analysis of mRNA by Northern blot and reverse transcription-polymerase chain reaction demonstrated the expression of sense and considerable amounts of naturally occurring antisense mRNA for β-myosin heavy chain (MHC) and α-MHC in the neonatal rat heart: antisense MHC mRNA expression of α-MHC and β-MHC was approximately half of the corresponding sense MHC mRNA expression. Using a computational approach, we could identify a reverse Pol II promoter in the β-MHC gene. Both sense and antisense MHC mRNA demonstrated similar sizes of approximately 6,000 bp in the Northern blot. Alpha-MHC antisense mRNA consisted of approximately 3,700 bp of complementary exon sequences and β-MHC consisted of approximately 2,700 bp, suggesting a higher probability of α-MHC mRNA dimerization. Hence, sense mRNA transcripts and protein of α-MHC should exist at different relative levels in the neonatal state. In fact, the relative proportion of α-MHC was 52.0 ± 2.6% on the sense mRNA but only 36.3 ± 1.8% on the protein level. Because of its high abundance in the heart, we suggest that in the neonatal heart naturally occurring antisense mRNA may play a role in the regulation of MHC expression and, therefore, in the control of the energetical and contractile behaviour of the heart. J. Cell. Biochem. 70:110-120, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 429-440 
    ISSN: 0730-2312
    Keywords: proteasome ; VDR ; SUG1 ; AF-2 domain ; 1,25-(OH)2D3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AF-2 helix of nuclear receptors is essential for ligand-activated transcription, and it may function to couple the receptor to transcriptional coactivator proteins. This domain also contacts components of the proteasome machinery, suggesting that nuclear receptors may be targets for proteasome-mediated proteolysis. In the present study, we demonstrate that mSUG1 (P45), a component of the 26S proteasome, interacts in a 1,25-(OH)2D3-dependent manner with the AF-2 domain of the vitamin D receptor (VDR). Furthermore, treatment of ROS 17/ 2.8 osteosarcoma cells with the proteasome inhibitors MG132 or β-lactone increased steady-state levels of the VDR protein. In the presence cycloheximide (10 μg/ ml), the liganded VDR protein was degraded with a half-life of approximately 8 h, and this rate of degradation was completely blocked by 0.05 mM MG132. The role of SUG1-VDR interaction in this process was investigated in transient expression studies. Overexpression of wild-type mSUG1 in ROS17/ 2.8 cells generated a novel proteolytic VDR fragment of approximately 50 kDa, and its production was blocked by proteasome inhibitors or by a nonhydrolyzable ATP analog. Parallel studies with SUG1(K196H), a mutant that does not interact with the VDR, did not produce the 50 kDa VDR fragment. Functionally, expression of SUG1 in a VDR-responsive reporter gene assay resulted in a profound inhibition of 1,25-(OH)2D3-activated transcription, while expression of SUG1(K196H) had no significant effect in this system. These data show that the AF-2 domain of VDR interacts with SUG1 in a 1,25-(OH)2D3-dependent fashion and that this interaction may target VDR to proteasome-mediated degradation as a means to downregulate the 1,25-(OH)2D3-activated transcriptional response. J. Cell. Biochem. 71:429-440, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    ISSN: 0730-2312
    Keywords: proliferation ; maturation ; intracellular magnesium pools ; receptor-mediated stimuli ; cyclic-AMP ; IFN-α ; cell permeabilization ; ionophore A23187 ; Na-Mg antiporter ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Magnesium homeostasis in HL-60 promyelocytic leukemia cells was compared to that in neutrophyl-like HL-60 cells obtained by 1.3% DMSO treatment. Magnesium homeostasis was studied by the characterization of magnesium efflux, the identification of intracellular magnesium pools, and the regulation of intracellular ionized Mg2+. In both undifferentiated and neutrophyl-like HL-60 cells, magnesium efflux occurred via the Na-Mg antiporter which was inhibited by imipramine and stimulated by db cAMP and forskolin. Receptor-mediated signals such as ATP, IFN-α, or PGE1, which can trigger cAMP-dependent magnesium efflux, were ineffective in undifferentiated HL-60 cells but induced 60-70% increase of magnesium efflux in neutrophyl-like HL-60 cells. Selective membrane permeabilization by the cation ionophore A23187 induced a large magnesium release when cells were treated with rotenone. In both cell populations, the addition of glucose to rotenone-treated cells restored magnesium release to the control level. Permeabilization by 0.005% digitonin provoked the release of 90% cell total magnesium in both cell types. Intracellular [Mg2+]i was 0.15 and 0.26 mM in undifferentiated and neutrophyl-like HL-60 cells, respectively. Stimuli that triggered magnesium efflux, such as db cAMP in undifferentiated and IFN-α in neutrophyl-like HL-60 cells, induced a slow but consistent increase of [Mg2+]i which was independent from Ca2+movements. Overall, these data indicate that magnesium homeostasis is regulated by receptor-mediated magnesium efflux which was modified during differentiation of HL-60 cells. Stimulation of magnesium efflux is paralleled by an increase of [Mg2+]i which reflects a release of magnesium from the bound cation pool. J. Cell. Biochem. 71:441-448, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    ISSN: 0730-2312
    Keywords: dexamethasone ; stromal cells ; IGF I ; IGF II ; IGFBPs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1-4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449-458, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Sackett RL, McCusker RH (1998): Multivalent cations depress ligand affinity of insulin-like growth factor-binding proteins-3 and -5 on human GM-10 fibroblast cell surfaces. J Cell Biochem 69:364-375.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 461-466 
    ISSN: 0730-2312
    Keywords: TRAF2 ; tumor necrosis factor ; NF-κB ; apoptosis ; myotube ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent data involving traf2 knockout mice have suggested a necessity of the protein in viability of skeletal muscle tissue. traf2-/- mice are born with decreased muscle mass that is hypothesized to be due to the increased circulating tumor necrosis factor in these mice. We show that TRAF2 protein is present at high levels in terminally differentiated skeletal muscle in the developing mouse. In vitro differentiation of mouse myoblasts displays a dramatic increase in TRAF2 protein levels. Although basal NF-κB activity decreases during myogenesis, TNF-induced NF-κB activity is 10 times greater in myotubes compared with myoblasts, presumably because of the stockpiling of TRAF2 protein in these cells. This may represent a strong anti-apoptotic TRAF2-mediated response specifically tailored to myotubes. These data help explain why muscle integrity is at risk in traf2-/- mice. J. Cell. Biochem. 71:461-466, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 467-478 
    ISSN: 0730-2312
    Keywords: cell cycle ; kinase ; signal transduction ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: CDK9 has been recently shown to have increased kinase activity in differentiated cells in culture and a differentiated tissue-specific expression in the developing mouse. In order to identify factors that contribute to CDK9's differentiation-specific function, we screened a mouse embryonic library in the yeast two-hybrid system and found a tumor necrosis factor signal transducer, TRAF2, to be an interacting protein. CDK9 interacts with a conserved domain in the TRAF-C region of TRAF2, a motif that is known to bind other kinases involved in TRAF-mediated signaling. Endogenous interaction between the two proteins appears to be specific to differentiated tissue. TRAF2-mediated signaling may incorporate additional kinases to signal cell survival in myotubes, a cell type that is severely affected in TRAF2 knockout mice. J. Cell. Biochem. 71:467-478, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 479-490 
    ISSN: 0730-2312
    Keywords: macrophages ; antioxidant status ; NOD mice ; immunocytochemistry ; type 1 diabetes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study showed that citiolone (CIT), a free radical scavenger, significantly increased superoxide dismutase (P 〈 0.001 vs. untreated NOD, NMMA-treated, and silica-treated animals), catalase (P 〈 0.01 vs. untreated NOD), and glutathione peroxidase (P 〈 0.001 vs. untreated NOD and C57BL6/J) values. Silica treatment was capable of counteracting the plasma antioxidant capacity (TRAP) decrease observed in untreated NOD mice, although it did not block the blood glucose rise and insulitis progression in type 1 diabetes significantly. Conversely, early silica administration was able to deplete macrophages (as demonstrated by immunocytochemistry) and to block the rise in blood glucose levels and insulitis progression significantly. Silica-treated animals in this study showed the highest TRAP levels, demonstrating that depletion of macrophages also was able to improve the antioxidant status. This study suggested that macrophages are essential for type 1 diabetes development and showed that they also are involved when the antioxidant status is affected. The reported findings are significant in view of previous studies indicating that oxygen and/or nitrogen free radicals contribute to the islet β-cell destruction in type 1 diabetes animal models. J. Cell. Biochem. 71:479-490, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 596-603 
    ISSN: 0730-2312
    Keywords: poly(ADP-ribose) ; PARP ; nuclear matrix ; noncovalent interactions ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent evidence suggests that poly(ADP-ribose) may take part in DNA strand break signalling due to its ability to interact with and affect the function of specific target proteins. Using a poly(ADP-ribose) blot assay, we have found that several nuclear matrix proteins from human and murine cells bind ADP-ribose polymers with high affinity. The binding was observed regardless of the procedure used to isolate nuclear matrices, and it proved resistant to high salt concentrations. In murine lymphoma LY-cell cultures, the spontaneous appearance of radiosensitive LY-S sublines was associated with a loss of poly(ADP-ribose)-binding of several nuclear matrix proteins. Because of the importance of the nuclear matrix in DNA processing reactions, the targeting of matrix proteins could be an important aspect of DNA damage signalling via the poly ADP-ribosylation system. J. Cell. Biochem. 70:596-603. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    ISSN: 0730-2312
    Keywords: skin ; signaling ; wound healing ; skin diseases ; receptor regulation ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Keratinocytes play a critical role in re-epithelialization during wound healing, and alterations in keratinocyte proliferation and function are associated with the development of various skin diseases. Although it is well documented that TGF-β has profound effects on keratinocyte growth and function, there is a paucity of information on the types, isoform specificity and complex formation of TGF-β receptors on keratinocytes. Here, we report that in addition to the types I, II, and III TGF-β receptors, early passage adult and neonatal human keratinocytes display a cell surface glycosylphosphatidylinositol (GPI)-anchored 150 kDa TGF-β1 binding protein. The identities of the four proteins were confirmed on the basis of their affinity for TGF-β isoforms, immunoprecipitation with specific anti-receptor antibodies, sensitivity to phosphatidylinositol specific phospholipase C and dithiothreitol, and 2-dimensional electrophoresis. Interestingly, the antitype I TGF-β receptor antibody immunoprecipitated not only the type I receptor, but also the type II receptor and the 150 kDa component, suggesting that the 150 kDa component form heteromeric complexes with the signalling receptors. In addition, two-dimensional (nonreducing/reducing) electrophoresis confirmed the occurrence of a heterotrimeric complex consisting of the 150 kDa TGF-β1 binding protein, the type II receptor, and the type I receptor. This technique also demonstrated the occurrence of types I and II heterodimers and type I homodimers of TGF-β receptors on keratinocytes, supporting the heterotetrameric model of TGF-β signalling proposed using mutant cells and cells transfected to overexpress these receptors. The keratinocytes responded to TGF-β by markedly downregulating all four TGF-β binding proteins and by potently inhibiting DNA synthesis. The demonstration that the 150 kDa GPI-anchored TGF-β1 binding protein forms a heteromeric complex with the TGF-β signalling receptors suggests that this GPI-anchored protein may modify TGF-β signalling in human keratinocytes. J. Cell. Biochem. 70:573-586, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 604-615 
    ISSN: 0730-2312
    Keywords: DNA replication ; apoptosis ; DNA cleavage ; endonuclease ; Bal 31 ; topological domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have addressed the association between the site of DNA cleavage during apoptosis and DNA replication. DNA double strand breaks were introduced into chromatin containing pulse labeled nascent DNA by the induction of apoptosis or autocleavage of isolated nuclei. The location of these breaks in relation to nascent DNA were revealed by Bal 31 exonuclease digestion at the cut sites. Our data show that Bal31 accessible cut sites are directly linked to regions enriched in nascent DNA. We suggest that these regions coincide with the termini of replication domains, possibly linked by strong DNA-matrix interactions with biophysically defined topological structures of 0.5 - 1.3 Mbp in size. The 50 kbp fragments that are commonly observed as products of apoptosis are also enriched in nascent DNA within internal regions but not at their termini. It is proposed that these fragments contain a subset of replicon DNA that is excised during apoptosis through recognition of their weak attachment to the nuclear matrix within the replication domain.J. Cell. Biochem. 70:604-615, 1998. © 1998 Wiley-Liss, Inc. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 11-20 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; DNA replication ; α-polymerase ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the association of DNA polymerase and DNA primase activity with the nuclear matrix in HeLa S3 cells diluted with fresh medium after having been cultured without any medium change for 7 days. Flow cytometric analysis demonstrated that just before dilution about 85% of the cells were in the G1 phase of the cycle, whereas 8% were in the S phase. After dilution with fresh medium, 18-22 h were required for the cell population to attain a stable distribution with respect to the cell cycle. At that time, about 38% of the cells were in the S phase. DNA polymerase and DNA primase activity associated with the nuclear matrix prepared from cells just before dilution represented about 10% of nuclear activity. As judged by [3H]-thymidine incorporation and flow cytometric analysis, an increase in the number of S-phase cells was evident at least 6 h after dilution. However, as early as 2 h after dilution into fresh medium, a striking prereplicative increase of the two activitites was seen in the nuclear matrix fraction but not in cytosol or isolated nuclei. Both DNA polymerase and primase activities bound to the matrix were about 60% of nuclear activity. Overall, the nuclear matrix was the cell fraction where the highest induction (about 10-fold) of both enzymatic activities was seen at 30 h after dilution, whereas in cytosol and isolated nuclei the increase was about two- and fourfold, respectively. Typical immunofluorescent patterns given by an antibody to 5-bromodeoxyuridine were seen after dilution. These findings, which are at variance with our own previous results obtained with cell cultures synchronized by either a double thymidine block or aphidicolin exposure, strengthen the contention that DNA replication is associated with an underlying nuclear structure and demonstrate the artifacts that may be generated by procedures commonly used to synchronize cell cultures. J. Cell. Biochem. 71:11-20, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    ISSN: 0730-2312
    Keywords: immunocytochemistry ; breast cancer ; monoclonal antibody ; subcellular localization ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The arsenite-stimulated human ATPase (hASNA-I) protein is a distinct human ATPase whose cDNA was cloned by sequence homology to the Escherichia coli ATPase arsA. Its subcellular localization in human malignant melanoma T289 cells was examined to gain insight into the role of hASNA-I in the physiology of human cells. Immunocytochemical staining using the specific anti-hASNA-I monoclonal antibody 5G8 showed a cytoplasmic, perinuclear, and nucleolar distribution. Subcellular fractionation indicated that the cytoplasmic hASNA-I was soluble and that the perinuclear distribution was due to association with the nuclear membrane rather than with the endoplasmic reticulum. Its presence in the nucleolus was confirmed by showing colocalization with an antibody of known nucleolar specificity. Further immunocytochemical analysis showed that the hASNA-I at the nuclear membrane was associated with invaginations into the nucleus in interphase cells. These results indicate that hASNA-I is a paralogue of the bacterial ArsA protein and suggest that it plays a role in the nucleocytoplasmic transport of a nucleolar component. J. Cell. Biochem. 71:1-10, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 36-45 
    ISSN: 0730-2312
    Keywords: chemokine receptor CCR5 ; G-protein activation ; receptor desensitization ; internalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chemokine receptor CCR5 is not only essential for chemotaxis of leukocytes but also has been shown to be a key coreceptor for HIV-1 infection. In the present study, hemagglutinin epitope-tagged human CCR5 receptor was stably expressed in Chinese hamster ovary cells or transiently expressed in NG108-15 cells to investigate CCR5-mediated signaling events. The surface expression of CCR5 was confirmed by flow cytometry analysis. The CCR5 agonist RANTES stimulated [35S]GTPγS binding to the cell membranes and induced inhibition on adenylyl cyclase activity in cells expressing CCR5. The effects of RANTES were CCR5 dependent and could be blocked by pertussis toxin. Furthermore, overexpression of Giα2 strongly increased both RANTES-dependent G-protein activation and inhibition on adenylyl cyclase in cells cotransfected with CCR5. These data demonstrated directly that activation of CCR5 stimulated membrane-associated inhibitory G proteins and indicated that CCR5 could functionally couple to G-protein subtype Giα2. The abilities of CCR5 to activate G protein and to inhibit cellular cAMP accumulation were significantly diminished after a brief prechallenge with RANTES, showing rapid desensitization of the receptor-mediated responsiveness. Prolonged exposure of the cells to RANTES caused significant reduction of surface CCR5 as measured by flow cytometry, indicative of agonist-dependent receptor internalization. Our data thus demonstrated that CCR5 functionally couples to membrane-associated inhibitory G proteins and undergoes agonist-dependent desensitization and internalization. J. Cell. Biochem. 71:36-45, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    ISSN: 0730-2312
    Keywords: heat shock protein ; heat shock genes ; heat shock element ; heat shock factor ; basal transcription elements ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Exposure of 9L rat brain tumor cells to 40-100 μM CdCl2 for 2 h leads to an induction of a wide spectrum of heat shock proteins (HSPs). We have demonstrated that induction of the 70-kDa HSP (HSP70) and enhanced expression of its cognate (HSC70) by cadmium are concentration dependent and that the induction kinetics of these HSP70s are different. The increased synthesis of the HSP70s is accompanied by the increase in hsp70 and hsc70 mRNA levels, indicative of transcriptional regulation of the heat shock genes. Electrophoretic mobility shift assay (EMSA) using probes encompassing heat shock element (HSE), TATA, GC, and CCAAT boxes derived from the promoter regions of the heat shock genes shows distinguished binding patterns between hsp70 and hsc70 genes in both control and cadmium-treated cells. The results indicate that, in addition to the HSEs, the basal transcription elements are important in the regulation of the heat shock genes. The binding patterns of the corresponding transcription factors of these elements are examined by EMSA by using extended promoter fragments from respective heat shock genes with sequential addition of excess oligonucleotides encompassing individual transcription elements. Taken together, our results show that the differential induction of hsp70 and hsc70 involves multiple transcription factors that interact with HSE, TATA, GC, and CCAAT boxes. J. Cell. Biochem. 71:21-35, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 46-54 
    ISSN: 0730-2312
    Keywords: homeobox ; breast ; ligase chain reaction ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Homeodomain-containing proteins regulate, as transcription factors, the coordinated expression of genes involved in development, differentiation, and malignant transformation. We report here the molecular cloning of a mutated HOXB7 transcript encoding a truncated homeodomain-containing protein in MCF7 cells. This is a new example of mutation affecting the coding region of a HOX gene. In addition, we detected two HOXB7 transcripts in several breast cell lines and demonstrated that both normal and mutated alleles were expressed at the RNA level in MCF7 cells as well as in a variety of breast tissues and lymphocytes, suggesting that a truncated HOXB7 protein might be expressed in vivo. Using transient co-transfection experiments, we demonstrated that both HOXB7 proteins can activate transcription from a consensus HOX binding sequence in breast cancer cells. Our results provide evidence that HOXB7 protein has transcription factor activity in vivo and that the two last amino acids do not contribute to this property. J. Cell. Biochem. 71:46-54. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    ISSN: 0730-2312
    Keywords: osteoblast ; marrow stromal cell ; osteoblastic differentiation ; dexamethasone ; bone tissue engineering ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the effects of the time course of addition of osteogenic supplements dexamethasone, β-glycerolphosphate, and L-ascorbic acid to rat marrow stromal cells, and the exposure time on the proliferation and differentiation of the cells. It was the goal of these experiments to determine the time point for supplement addition to optimize marrow stromal cell proliferation and osteoblastic differentiation. To determine this, two studies were performed; one study was based on the age of the cells from harvest, and the other study was based on the duration of exposure to supplemented medium. Cells were seen to proliferate rapidly at early time points in the presence and absence of osteogenic supplements as determined by 3H-thymidine incorporation into the DNA of replicating cells. These results were supported by cell counts ascertained through total DNA analysis. Alkaline phosphatase (ALP) activity and osteocalcin production at 21 days were highest for both experimental designs when the cells were exposed to supplemented medium immediately upon harvest. The ALP levels at 21 days were six times greater for cells maintained in supplements throughout than for control cells cultured in the absence of supplements for both studies, reaching an absolute value of 75 × 10-7 μmole/min/cell. Osteocalcin production reached 20 × 10-6 ng/cell at 21 days in both studies for cells maintained in supplemented medium throughout the study, whereas the control cells produced an insignificant amount of osteocalcin. These results suggest that the addition of osteogenic supplements to marrow-derived cells early in the culture period did not inhibit proliferation and greatly enhanced the osteoblastic phenotype of cells in a rat model. J. Cell. Biochem. 71:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    ISSN: 0730-2312
    Keywords: prostaglandin ; phospholipase A2 ; age ; tumor necrosis factor-α ; transforming growth factor-β1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The eicosanoids, including prostaglandin E2 (PGE2) and other bioactive arachidonic acid metabolites, are important local mediators of bone remodeling. Presumably, the limited or excessive synthesis of the eicosanoids could compromise bone homeostasis. We have noted that the stimulated release of arachidonic acid by adult male donor derived human osteoblast-like (hOB) cells exceeded the stimulated release measured for female-derived hOB cells by 1.5-fold. Assays of PGE2 biosynthesis by cytokine-stimulated hOB cells also demonstrated a sex-linked difference, such that male hOB cell PGE2 production exceeded female cell production by 1.6-2.2-fold. The calcium-dependent cytoplasmic phospholipase A2 activity in subcellular fractions prepared from hOB cell homogenates was higher in both the cytosolic (1.6-fold) and particulate (1.5-fold) fractions from the male cells than in those prepared from female hOB cells, suggesting a molecular basis for the observed sexually dimorphic characteristics related to arachidonic acid metabolism by hOB cells. The relatively limited capacity of the female cells may limit needed intracellular and intercellular signaling during bone remodeling, thereby contributing to the development of bone pathology. J. Cell. Biochem. 71:74-81, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 63-73 
    ISSN: 0730-2312
    Keywords: integrin ; activation epitopes ; ligand binding ; focal adhesions ; cytoplasmic domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The anti-integrin β1 MAb 15/7 sometimes may be a reporter of integrin activation or ligand occupancy. However, certain β1 tail deletions eliminate ligand binding despite inducing maximal constitutive 15/7 expression [Puzon-Mclaughlin et al. (1996): J Biol Chem 271:16580-16585]. Here we describe β1 tail mutations (e.g., double point mutations [D759L/F763L, F766L/E769L], or replacement of the β1 tail by the β5 tail) that prevent rather than induce constitutive appearance of the 15/7 epitope. Despite variable losses of constitutive 15/7 epitope, these mutants all retained a similar inducible 15/7 epitope component as seen upon incubation with GRGDSP peptide ligand. In addition, constitutive 15/7 expression did not correlate with integrin localization into focal adhesions. In conclusion, we show for the first time for a fully functional integrin that specific mutations within the β1 tail can down-regulate the constitutive appearance of an extracellular conformation defined by MAb 15/7. Because this regulation occurs away from the ligand binding site and does not correlate with responsiveness to integrin ligand, cell adhesion, or localization into focal adhesions, a novel type of conformational regulation is suggested. J. Cell. Biochem. 71:63-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    ISSN: 0730-2312
    Keywords: fluid shear stress ; adrenomedullin ; endothelial cell ; SSRE ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vascular endothelial cells are potent modulators of vascular tone in response to shear stress. Levels of vasoactive peptides such as adrenomedullin (AM), endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO) are affected by fluid shear stress. AM, a potent vasodilator and suppressor of smooth muscle cell proliferation, contains the shear stress responsive element (SSRE) “GAGACC” in its promoter region. To examine the role of AM in the shear stress response, cultured human aortic endothelial cells (HAoECs) were exposed to fluid shear stresses of 12 and 24 dynes/cm2 in a cone-plate shear stress loading apparatus for various time periods, and the levels of AM gene expression and peptide secretion from HAoECs were measured by Northern blotting analysis and radioimmunoassay (RIA), respectively. Both AM gene transcription and AM peptide levels were down-regulated by fluid shear stress in a time- and magnitude-dependent manner. Our results demonstrate that the normal level of arterial shear stress down-regulates AM expression in HAoECs, suggesting that AM participates in the modulation of vascular tone by fluid shear stress. J. Cell. Biochem. 71:109-115, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 96-108 
    ISSN: 0730-2312
    Keywords: androgens ; androgen receptor ; antiandrogens ; differentiation ; osteoblasts ; proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: While androgens have important skeletal effects, the mechanism(s) of androgen action on bone remain unclear. Current osteoblast models to study androgen effects have several limitations, including the presence of heterogeneous cell populations. In this study, we examined the effects of androgens on the proliferation and differentiation of a novel human fetal osteoblastic cell line (hFOB/AR-6) that expresses a mature osteoblast phenotype and a physiological number (∼4,000/nucleus) of androgen receptors (AR). Treatment with 5α-dihydrotestosterone (5α-DHT) inhibited the proliferation of hFOB/AR-6 cells in a dose-dependent fashion, while it had no effect on the proliferation of hFOB cells, which express low levels of AR (〈200/nucleus). In hFOB/AR-6 cells, co-treatment with the specific AR antagonist, hydroxyflutamide abolished 5α-DHT-induced growth inhibition. Steady-state levels of transforming growth factor-β1 (TGF-β1) and TGF-β-induced early gene (TIEG) mRNA decreased after treatment of hFOB/AR-6 cells with 5α-DHT, suggesting a role for the TGF-β1-TIEG pathway in mediating 5α-DHT-induced growth inhibition of hFOB/AR-6 cells. In support of this, co-treatment of hFOB/AR-6 cells with TGF-β1 (40 pg/ml) reversed the 5α-DHT-induced growth inhibition, whereas TGF-β1 alone at this dose had no effect on hFOB/AR-6 cell proliferation. Furthermore, treatment of hFOB/AR-6 cells with 5α-DHT and testosterone (10-8 M) inhibited basal and 1,25-(OH)2D3-induced alkaline phosphatase (ALP) activity and type I collagen synthesis without affecting osteocalcin production. Thus, in this fetal osteoblast cell line expressing a physiological number of AR, androgens decrease proliferation and the expression of markers associated with osteoblast differentiation. These studies suggest that the potential anabolic effect of androgens on bone may not be mediated at the level of the mature osteoblast. J. Cell. Biochem. 71:96-108, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 82-95 
    ISSN: 0730-2312
    Keywords: M-line proteins ; titin ; expression ; antibody perturbation ; immunocytochemistry ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A rat polyclonal anti-M-line protein antiserum and three mouse monoclonal anti-titin antibodies (E2, F3, and A12) were used to study the spatiotemporal relationship between M-line proteins and titin during myofibril assembly in cultured chicken cardiomyocytes by immunofluorescence microscopy. In day 2 cultures, M-line proteins and titin were detected as punctate staining in most cardiomyocytes, which possessed many nonstriated fibrils. At a late stage (day 3 cultures), M-line proteins were incorporated into dot-like structures along nonstriated fibrils, while titin staining was continuous on these structures. As development progressed, M-line proteins were registered in periodic pattern in the mid-A band. In cardiomyocytes from day 5 cultures, the titin bands were separated by an unstained region, and achieved their adult doublet pattern. Thus, the organization of titin in the sarcomere appears to occur later than that of M-line proteins in the M-line. Our morphological data indicate that the early registration of M-line proteins in primitive myofibrils may guide titin filament alignment via interaction between M-line proteins and titin. In order to investigate the role of M-line proteins in the assembly of titin filaments, anti-M-line protein or anti-titin antibodies were introduced into cultured cardiomyocytes by electroporation to functionally bind the respective proteins, and the profile of myofibril assembly was examined. Cardiomyocytes from day 2-3 cultures with incorporated anti-M-line protein antibodies became shrunk, and exhibited defective myofibrillar assembly, as shown by the failure of titin to assemble into a typical sarcomeric pattern. Incorporation of anti-titin antibody E2, which recognizes the M-line end domain of titin, resulted in the failure of M-line proteins organized into the M-line structure, as shown by random, sporadic staining with anti-M-line protein antibody. These studies confirm the essential role of M-line proteins in the organization of titin filaments in the sarcomere and that the interaction between titin and M-line proteins is crucial to the formation of the M-line structure. J. Cell. Biochem. 71:82-95, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 127-139 
    ISSN: 0730-2312
    Keywords: GAPDH gene expression ; spermatogenesis ; meiotic and postmeiotic cells ; heat shock ; polyadenylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in addition to being a classic glycolytic enzyme, is a multifunctional protein involved in relevant cell functions such as DNA replication, DNA repair, translational control of gene expression, and apoptosis. Although the multifunctional nature of GAPDH suggests versatility in the mechanisms regulating its expression, no major qualitative changes and few quantitative changes in the GAPDH transcripts have been reported. While studying the expression of GAPDH during spermatogenesis, we detected alternative initiations to TATA box and alternative splicings in the 5′ region of the pre-mRNA, resulting in at least six different types of mRNAs. The amount and the polyadenylation of the GAPDH transcripts increased in mature testis in relation to immature testis and further increased when cell suspensions from mature testis were exposed to heat shock. These results suggest that alternative initiation, alternative splicing, and polyadenylation could provide the necessary versatility to the regulation of the expression of this multifunctional protein during spermatogenesis. J. Cell. Biochem. 71:127-139, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    ISSN: 0730-2312
    Keywords: alkaline phosphatase ; osteogenic induction ; pp60Src ; tyrosine phosphorylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cyclosporin A (CsA) induces osteoporosis but not through direct activation of osteoclasts. CsA also inhibits cell-mediated mineralization in marrow stromal cell culture, whereas the tyrphostin AG-1478 increases mineralization. These antagonistic effects on mineralization were used to discern molecules that underwent phosphorylation changes in association with their opposing effects on mineralization. In parallel, quantitative changes in Src protein were followed. Multiple dexamethasone (DEX)-stimulated stromal cell cultures were grown with and without a mineralization-inhibiting dose (0.1 μM) of CsA and were harvested on different days of DEX stimulation. Immunoblots of gel-fractionated cell extracts showed that the most noticeable changes in tyrosine phosphorylated proteins (TPP) were seen on day 8 of DEX stimulation. At least 15 TPP bands, mostly smaller than 53 kDa, were more prominent in CsA-treated cultures on day 8. Under CsA, Src protein quantity decreased on day 8, but its cleavage product (52/54 kDa) was sixfold more abundant then on day 7. Day 8 was chosen to test the effect of AG-1478 on the CsA-induced TPP changes. Dimethyl sulfoxide (DMSO) alone, the solvent of AG-1478, increased mineralization in CsA-treated versus CsA-untreated cultures and slightly decreased Src and its cleavage product. AG-1478 at 5 μM, in CsA cultures increased the specific alkaline phosphatase activity threefold, with a slight change in mineralization relative to controls grown with DMSO alone. This was accompanied by decreased intensity of several TPP bands smaller than 36 kDa. In contrast, treatment with 50 μM of AG-1478 increased the intensity of TPP bands at the same molecular size range. This high AG-1478 dose decreased cell counts selecting mineralizing cells. The results indicate that increased Src protein cleavage product on day 8 by CsA is associated with mineralization inhibition, which is opposed by DMSO and 50-μM AG-1478, thus antagonizing the effect of CsA on mineralization. Direct or indirect interaction between Src and TPP, antagonistically affected by CsA and AG-1478, is likely to underlay cellular control of mineralization. Changes in p19 and p29 intensity showed association with mineralization that was reflected by a significant direct and inverse correlation, respectively, with calcium precipitation per cell. J. Cell. Biochem. 71:116-126, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 158-168 
    ISSN: 0730-2312
    Keywords: glycosylation ; lysosomal targeting ; lysozyme ; monensin ; myeloperoxidase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role of the N-terminal sequence of myeloperoxidase in the intracellular targeting was examined by using glycosylated lysozyme as a reporter. A fusion protein was constructed in which the presequence residues -18 through -6 of the lysozyme moiety had been replaced by residues 1-158 of prepromyeloperoxidase. Expression of the fusion protein in Chinese hamster ovary cells demonstrated its partial secretion and partial intracellular retention. The latter was accompanied by trimming the myeloperoxidase prosequence off the lysozyme moiety. The rate of the retention of the lysozyme fusion protein was higher than that of glycosylated lysozyme that had been expressed in cells transfected with cDNA of glycosylated lysozyme. The retention was insensitive to NH4Cl. In the secreted protein, lysozyme contained predominantly complex oligosaccharides as demonstrated by a proteolytic fragmentation in vitro and resistance to endo-β-N-acetylglucosaminidase H. In contrast, when targeted to lysosomes, the lysozyme moiety of the fusion protein contained predominantly mannose-rich oligosaccharides. In baby hamster kidney cells, the trimming of the oligosaccharides in the lysozyme fragment was less vigorous, and a selective targeting of molecules bearing mannose-rich oligosaccharides to lysosomes was more apparent than in Chinese hamster ovary cells. In the presence of monensin, the formation of complex oligosaccharides in the fusion protein and its secretion were strongly inhibited, whereas the intracellular fragmentation was not. We suggest that the prosequence of myeloperoxidase participates in the intracellular routing of the precursor and that this routing operates on precursors bearing mannose-rich rather than terminally glycosylated oligosaccharides and diverts them from the secretory pathway at a site proximal to the monensin-sensitive compartment of the Golgi apparatus. J. Cell. Biochem. 71:158-168, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 149-157 
    ISSN: 0730-2312
    Keywords: RAP ; α2MR/LRP ; melanocytes ; melanoma ; cell culture density ; flow cytometry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: α2-Macroglobulin receptor/low-density lipoprotein receptor-related protein is a multifunctional cell surface receptor known to bind and internalize a large number of ligands. α2-Macroglobulin receptor-associated protein acts as an intracellular “chaperone” for this receptor, and it has been shown to inhibit binding of all its known ligands. In this paper, we characterize the expression of the receptor-associated protein in both normal human epidermal melanocytes and in six different human melanoma cell lines, by the use of flow cytometry and Western blotting analysis. We show that all the melanoma cell lines and the normal melanocytes express the receptor-associated protein at similar levels, with most located intracellularly. No receptor-associated protein was detected at the cell surface in the melanocytes or in three of the cell lines. However, in two of the melanoma cell lines, large amounts of receptor-associated protein were found on the cell surface, these having the largest amounts of it reported to date; in a further melanoma cell line, there was a small amount at the cell surface. We have also shown that the melanocytes and all the melanoma cell lines express the receptor itself at a wide range of levels, the highest levels of both the cell surface receptor and the cell surface receptor-associated protein being found in one particular melanoma cell line. By growing the cell lines under controlled conditions, we have demonstrated that, although the total cellular content of the receptor is markedly increased at high cell culture density, this treatment has no effect on the level of expression of the receptor-associated protein. J. Cell. Biochem. 71:149-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 140-148 
    ISSN: 0730-2312
    Keywords: calmodulin ; calcineurin ; protein phosphatase ; calcium-binding protein ; regucalcin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The regulatory effect of regucalcin on Ca2+/calmodulin-dependent phosphatase activity and the binding of regucalcin to calmodulin was investigated. Phosphatase activity toward phosphotyrosine, phosphoserine, and phosphothreonine in rat liver cytosol was significantly increased by the addition of Ca2+ (100 μM) and calmodulin (0.30 μM). Thess increases were clearly inhibited by the addition of regucalcin (0.50-1.0 μM) into the enzyme reaction mixture. The cytosolic phosphoamino acid phosphatase activity was significantly elevated by the presence of anti-regucalcin monoclonal antibody (0.2 μg/ml), suggesting that endogenous regucalcin in the cytosol has an inhibitory effect on the enzyme activity. This elevation was prevented by the addition of regucalcin (0.50 μM). Purified calcineurin phosphatase activity was significantly increased by the addition of calmodulin (0.12 μM) in the presence of Ca2+ (1 and 10 μM). This increase was completely inhibited by the presence of regucalcin (0.12 μM). The inhibitory effect of regucalcin was reversed by the addition of calmodulin with the higher concentration (0.36 μM). Regucalcin has been demonstrated to bind on calmodulin-agarose beads by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The present study demonstrates that regucalcin inhibits Ca2+/calmodulin-dependent protein phosphatase activity in rat liver cytosol, and that regucalcin can bind to calmodulin. J. Cell. Biochem. 71:140-148, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 123-128 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A variety of oligosaccharide signals have been identified that function in the regulation of plant development, defense, and other interactions of plants with the environment. Some of these oligosaccharides are produced by various pathogens or symbionts, whereas others are synthesized by the plant itself. This mini-review summarizes our present state of information on these oligosaccharide signals and provides an overview of approaches being used to identify receptors for these signals and gain an understanding of the mechanism(s) by which these signals activate downstream events. Possible biotechnological applications of future work in this field are also considered. J. Cell. Biochem. Suppls. 30/31:123-128, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 129-136 
    ISSN: 0730-2312
    Keywords: protein kinase CK2 ; holoenzyme ; α- and β-subunits ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Protein kinase CK2 is a ubiquitous eukaryotic ser/thr protein kinase. The active holoenzyme is a heterotetrameric protein composed of catalytic (α and α′) and regulatory (β) subunits that phosphorylates many different protein substrates and appears to be involved in the regulation of cell division. Despite important structural studies, the intimate details of the interactions of the α catalytic subunits with the β regulatory subunits are unknown. Recent evidence that indicates that both CK2 subunits can interact promiscuously with other proteins in a manner that excludes the binding of their complementary CK2 partners has opened the possibility that the phosphorylating activity of this enzyme may be regulated in a novel way. These alternative interactions could limit the in vivo availability of CK2 subunits to generate fully active holoenzyme CK2 tetramers. Likewise, variations in the ratio of α- and β-subunits could determine the activity of several phosphorylating and dephosphorylating activities. The promiscuity of the CK2 subunits can be extrapolated to a more widespread phenomenon in which “wild-card” proteins could act as general switches by interacting and regulating several catalytic activities. J. Cell. Biochem. Suppls. 30/31:129-136, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 147-157 
    ISSN: 0730-2312
    Keywords: LPA ; S1P ; G protein ; intracellular signaling pathways ; Edg receptors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent phospholipid mediators with diverse biological activities. Their appearance and functional properties suggest possible roles in development, wound healing, and tissue regeneration. The growth-stimulating and other complex biological activities of LPA and S1P are attributable in part to the activation of multiple G protein-mediated intracellular signaling pathways. Several heterotrimeric G proteins, as well as Ras- and Rho-dependent pathways play central roles in the cellular responses to LPA and S1P. Recently, several G protein-coupled receptors encoded by a family of endothelial differentiation genes (edg) have been shown to bind LPA or S1P and transduce responses of cAMP, Ca2+, MAP kinases, Rho, and gene transcription. This review summarizes our current understanding of signaling pathways critical for cellular responses to LPA and S1P and of recent progress in the molecular biological analyses of the Edg receptors. J. Cell. Biochem. Suppls. 30/31:147-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 204-215 
    ISSN: 0730-2312
    Keywords: osteoclast ; spectrin ; membrane skeleton ; bone ; bone resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The presence of spectrin was demonstrated in chick osteoclasts by Western blotting and light and electron microscopic immunolocalization. Additionally, screening of a chick osteoclast cDNA library revealed the presence of α-spectrin. Light microscope level immunocytochemical staining of osteoclasts in situ revealed spectrin staining throughout the cytoplasm with heavier staining found at the marrow-facing cell margin and around the nuclei. Confocal microscopy of isolated osteoclasts plated onto a glass substrate showed that spectrin encircled the organelle-rich cell center. Nuclei and cytoplasmic inclusions were also stained and the plasma membrane was stained in a nonuniform, patchy distribution corresponding to regions of apparent membrane ruffling. Ultracytochemical localization showed spectrin to be found at the plasma membrane and distributed throughout the cytoplasm with especially intense staining of the nuclear membrane and filaments within the nuclear compartment. J. Cell. Biochem. 71:204-215, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 185-193 
    ISSN: 0730-2312
    Keywords: steroid receptor action ; co-repressors ; co-activators ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During the past few years, our understanding of nuclear receptor action has dramatically improved as a result of the identification and functional analysis of co-regulators such as factors involved in chromatin remodeling, transcription intermediary factors (co-repressors and co-activators), and direct interactions with the basal transcriptional machinery. Furthermore, the elucidation of the crystal structures of the empty ligand-binding domains of the nuclear receptor and of complexes formed by the nuclear receptor's ligand-binding domain bound to agonists and antagonists has contributed significantly to our understanding of the early events of nuclear receptor action. However, the picture of hormone- and hormone receptor-mediated mechanisms of gene regulation remain incomplete and extremely complicated when one also considers the “nontraditional” interactions of hormone-activated nuclear receptors, for example, interactions between the activated steroid receptors and components of the chromatin/nuclear matrix; and finally the nongenomic effects that steroid hormones can exhibit with other signaling pathways. In this prospectus on steroid receptors, we discuss the implications of various steroid hormone and nuclear receptor interactions and potential future directions of investigation. J. Cell. Biochem. Suppls. 30/31:185-193, 1998. © 1999 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 194-202 
    ISSN: 0730-2312
    Keywords: acute leukemias ; hematopoietic cells ; histone deacetylase complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Accumulating evidence points to a connection between cancer and transcriptional control by histone acetylation and deacetylation. This is particularly true with regard to the acute leukemias, many of which are caused by fusion proteins that have been created by chromosomal translocations. Genetic rearrangements that disrupt the retinoic acid receptor-α and acute myeloid leukemia-1 genes create fusion proteins that block terminal differentiation of hematopoietic cells by repressing transcription. These fusion proteins interact with nuclear hormone co-repressors, which recruit histone deacetylases to promoters to repress transcription. This finding suggests that proteins within the histone deacetylase complexes may be potential targets for pharmaceutical intervention in many leukemia patients. J. Cell. Biochem. Suppls. 30/31:194-202, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 214-219 
    ISSN: 0730-2312
    Keywords: nucleus ; nuclear envelope ; nuclear export ; nuclear import ; regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of transcription and translation is of fundamental importance in cell biology. In this regard, the nuclear envelope is in a unique position to contribute to the regulation of these events, by directing macromolecular exchanges between the nucleus and cytoplasm. Such exchanges occur through the nuclear pore complexes, mainly by signal-mediated processes. Different signals are required for import and export. Specific cytoplasmic or nuclear receptors initially bind the signal-containing substrate, and the complex subsequently interacts with the pores. Additional factors then assist in translocation across the envelope. Current research is focused mainly on further characterization of transport receptors, translocation factors, as well as components of the nuclear pore complex, i.e., the nucleoporins. The ultimate goal is to understand the molecular interactions that occur among the different components of the transport apparatus, the energy sources for transport, and how variations in transport capacity are generated. J. Cell. Biochem. Suppls. 30/31:214-219, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 232-237 
    ISSN: 0730-2312
    Keywords: cytoskeleton, mechanotransduction, integrins, cell architecture, tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future. J. Cell. Biochem. Suppls. 30/31:232-237, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 238-242 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; DNA replication sites ; transcription sites ; confocal microscopy ; nuclear domains ; higher-level nuclear organization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A new view of the cell nucleus is emerging based on the functional dynamics of nuclear architecture. The striking structural preservation of a variety of genomic processes on the nuclear matrix provides an important approach for correlating nuclear form and function. In situ labeling coupled with three-dimensional microscopy and computer imaging techniques shows that DNA replication and transcription sites are organized into higher-order units, or “zones,” in the cell nucleus. The dynamic interplay and “re-zoning” of replication and transcription regions during the cell cycle may form the structural basis for the elaborate global coordination of replicational and transcriptional programs in the mammalian cell. J. Cell. Biochem. Suppls. 30/31:238-242, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 277-283 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 250-263 
    ISSN: 0730-2312
    Keywords: signal transduction ; cell adhesion complexes ; membrane skeleton ; nucleo-cytoplasmic translocation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments. J. Cell. Biochem. Suppls. 30/31:250-263, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 297-303 
    ISSN: 0730-2312
    Keywords: tissue engineering ; biomaterials ; cell culture ; polymers ; transplants ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This article reviews the important developments in the field of tissue engineering over the last 10 years. Research in the area of biomaterials is examined from the perspective of providing the foundation for the development of tissue engineering. Early efforts combining cells with biocompatible materials are described and applications of this technology presented, with particular focus on uses in orthopaedics and maxillofacial surgery. The basic principles of tissue engineering and state-of-the-art technology in cell biology and materials science as used currently in the field are presented. Finally, futures challenges are outlined from the perspective of integrating technologies from medicine, biology, and engineering, in hopes of translating tissue engineering to clinical applications. J. Cell. Biochem. Suppls. 30/31:297-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 304-311 
    ISSN: 0730-2312
    Keywords: DNA vaccines ; gene therapy ; vectors ; immune response ; antigen presentation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Inoculations with antigen-expressing plasmid DNAs (DNA vaccines) in the production of protective immune responses. Since the initial development of DNA vaccines more than 5 years ago, major strides have been made in the design of efficient vaccine vectors and in the process of vaccine delivery. However, many questions remain regarding the mechanism of cellular transfection and in the development of immune responses. This review addresses functional aspects of DNA vaccines, including vector design and delivery, as well as cellular transfection and antigen presentation. J. Cell. Biochem. Suppls. 30/31:304-311, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 286-301 
    ISSN: 0730-2312
    Keywords: heart ; development ; MAPK ; MEK ; MEKK ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The loss of ability to proliferate (terminal differentiation) and reduction in capability to resist ischemia are key phenomena observed during postnatal development of the heart. Mitogen-activated protein kinases (MAPKs) mediate signaling pathways for cell proliferation/differentiation and stress responses such as ischemia. In this study, the expression of these kinases and their associated kinases were investigated in rat heart ventricle. Extracts of 1-, 10-, 20-, 50-, and 365-day-old rat heart ventricles were probed with specific antibodies and their immunoreactivities were quantified by densitometry. Most of the mitogenic protein kinases including Raf1, RafB, Mek1, Erk2, and Rsk1 were significantly down-regulated, whereas the stress signaling kinases, such as Mlk3, Mekk1, Sek1, Mkk3, and Mapkapk2 were up-regulated in expression during postnatal development. Most MAP kinases including Erk1, JNKs, p38 Hog, as well as Rsk2, however, did not exhibit postnatal changes in expression. The proto-oncogene-encoded kinases Mos and Cot/Tpl 2 were up-regulated up to two- and four-fold, respectively, during development. Pak1, which may be involved in the regulation of cytoskeleton as well as in stress signaling, was downregulated with age, but the Pak2 isoform increased only after 50 days. All of these proteins, except RafB, were also detected in the isolated adult ventricular myocytes at comparable levels to those found in adult ventricle. Tissue distribution studies revealed that most of the protein kinases that were up-regulated during heart development tended to be preferentially expressed in heart, whereas the downregulated protein kinases were generally expressed in heart at relatively lesser amounts than in most of other tissues. J. Cell. Biochem. 71:286-301, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    ISSN: 0730-2312
    Keywords: cartilage ; aging ; osteoarthritis ; programmed cell death ; cell culture ; human ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302-309, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 313-327 
    ISSN: 0730-2312
    Keywords: articular cartilage repair ; tissue engineering ; collagen type II ; collagen type IX ; collagen network ; pyridinium crosslinks ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The function of articular cartilage as a weight-bearing tissue depends on the specific arrangement of collagen types II and IX into a three-dimensional organized collagen network that can balance the swelling pressure of the proteoglycan/ water gel. To determine whether cartilage engineered in vitro contains a functional collagen network, chondrocyte-polymer constructs were cultured for up to 6 weeks and analyzed with respect to the composition and ultrastructure of collagen by using biochemical and immunochemical methods and scanning electron microscopy. Total collagen content and the concentration of pyridinium crosslinks were significantly (57% and 70%, respectively) lower in tissue-engineered cartilage that in bovine calf articular cartilage. However, the fractions of collagen types II, IX, and X and the collagen network organization, density, and fibril diameter in engineered cartilage were not significantly different from those in natural articular cartilage. The implications of these findings for the field of tissue engineering are that differentiated chondrocytes are capable of forming a complex structure of collagen matrix in vitro, producing a tissue similar to natural articular cartilage on an ultrastructural scale. J. Cell. Biochem. 71:313-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 328-339 
    ISSN: 0730-2312
    Keywords: insulin ; heart ; development ; PI 3-kinase ; protein kinase B ; S6 kinase ; casein kinase 2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of glucose uptake and glycogen metabolism by insulin in target organs is in part mediated through the regulation of protein-serine/ threonine kinases. In this study, the expression and phosphotransferase activity levels of some of these kinases in rat heart ventricle were measured to investigate whether they might mediate the shift in the energy dependency of the developing heart from glycogen to fatty acids. Following tail-vein injection of overnight fasted adult rats with 2 U of insulin per kg body weight, protein kinase B (PKB), the 70-kDa ribosomal S6 kinase (S6K), and casein kinase 2 (CK2) were activated (30-600%), whereas the MAP/ extracellular regulated kinases (ERK)1 and ERK2 were not stimulated under these conditions. When the expression levels of the insulin-activated kinases were probed with specific antibodies in ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats, phosphatidylinositol 3-kinase (PI3K), PKB, S6K, and CK2 were downregulated (40-60%) with age. By contrast, ventricular glycogen synthase kinase-3β (GSK3β) protein levels were maintained during postnatal development. Similar findings were obtained when the expression of these kinases was investigated in freshly isolated ventricular myocytes, where they were detected predominantly in the cytosolic fraction of the myocytes. Compared to other adult rat tissues such as brain and liver, the levels of PI3K, PKB, S6K, and GSK3β were relatively low in the heart. Even though CK2 protein and activity levels were reduced by ∼60% in 365 day as compared to 1-day-old rats, expression of CK2 in the adult heart was as high as detected in any of the other rat tissues. The high basal activities of CK2 in early neonatal heart may be associated with the proliferating state of myocytes. J. Cell. Biochem. 71:328-339, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    ISSN: 0730-2312
    Keywords: vitamin D analogues ; vitamin D receptor ; ligand binding ; limited protease digestion ; ligand-dependent gel shift assay ; gene regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear hormone 1α,25-dihydroxyvitamin D3 (VD) has important cell-regulatory functions but also a strong calcemic effect. Therefore, various VD analogues have been synthesized and screened for their biological profile. In order to gain more insight into the molecular basis of the high antiproliferative but low calcemic action of the VD analogue EB1089, we characterized this compound in comparison to five structurally related VD analogues. The activities of the six VD analogues in in vitro assays (limited protease digestion assays for determining interaction with monomeric vitamin D receptor (VDR), ligand-dependent gel shift assays for showing the increase of DNA binding of VDR-retinoid X receptor (RXR) heterodimers, and reporter gene assays on different types of VD response elements for demonstrating the efficacy in nuclear VD signalling) were found to represent their biological potency (antiproliferative effect on different malignant cell lines). In this series, EB1089 proved to be the most potent VD analogue; that is, every structural modification (20-epi configuration, cis-configuration at position C24, or changes at the ethyl groups at position C25) appeared to reduce the determined activities mediated through the VDR of these analogues. Moreover, the modifications of EB1089 resulted in a loss of VD response element selectivity, suggesting that this parameter is very critical for the biological profile of this VD analogue. J. Cell. Biochem. 71:340-350, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 363-374 
    ISSN: 0730-2312
    Keywords: nuclear matrix proteins ; preparation method ; two-dimensional polyacrylamide gel electrophoresis ; heterogeneous nuclear ribonucleoproteins ; vanadyl ribonucleoside complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Comparative analysis of nuclear matrix proteins by two-dimensional electrophoresis may be greatly impaired by copurifying cytoskeletal proteins. The present data show that the bulk of adhering cytofilaments may mechanically be removed by shearing of nuclei pretreated with vanadyl ribonucleoside complexes. Potential mechanisms of action not based on ribonuclease inhibition are discussed. To individually preserve the integrity of nuclear structures, we developed protocols for the preparation of nuclear matrices from three categories of cells, namely leukocytes, cultured cells, and tissue cells. As exemplified with material from human lymphocytes, cultured amniotic cells, and liver tissue cells, the resulting patterns of nuclear matrix proteins appeared quite similar. Approximately 300 spots were shared among the cell types. Forty-nine of these were identified, 21 comprising heterogeneous nuclear ribonucleoproteins. Heterogeneous nuclear ribonucleoproteins L and nuclear lamin B2 isoforms were identified by amino acid sequencing and mass spectrometry. However, individually expressed proteins, such as the proliferating cell nuclear antigen, also pertained following application of the protocols. Thus, enhanced resolution and comparability of proteins improve systematic analyses of nuclear matrix proteins from various cellular sources. J. Cell. Biochem. 71:363-374, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 264-276 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genes involved in chromosomal translocations, associated with the formation of fusion proteins in leukemia, are modular in nature and regulatory in function. It is likely that they are involved in the initiation and maintenance of normal hematopoiesis. A conceptual model is proposed by which disruption of these different genes leads to the development of acute leukemia. Central to this model is the functional interaction between the mammalian trithorax and polycomb group protein complexes. Many of the genes identified in leukemia-associated translocations are likely upstream regulators, co-participators or downstream targets of these complexes. In the natural state, these proteins interact with each other to form multimeric higher-order structures, which sequentially regulate the development of the normal hematopoietic state, either through HOX gene expression or other less defined pathways. The novel interaction domains acquired by the chimaeric fusion products subvert normal cellular control mechanisms, which result in both a failure of cell maturation and activation of anti-apoptotic pathways. The mechanisms by which these translocation products are able to affect these processes are thought to lie at the level of chromatin-mediated transcriptional activation and/or repression. The stimuli for proliferation and development of clinically overt disease may require subsequent mutations in more than one oncogene or tumor suppressor gene, or both. A more comprehensive catalogue of mutation events in malignant cells is therefore required to understand the key regulatory networks that serve to maintain multipotentiality and in particular the modifications which initiate and coordinate commitment in differentiating hematopoietic cells. We propose a model in which common pathways for leukemogenesis lie along the cell cycle control of chromatin structure in terms of transcriptional activation or repression. A clearer understanding of this cascade will provide opportunities for the design and construction of novel biological agents that are able to restore normal regulatory mechanisms. J. Cell. Biochem. Suppls. 30/31:264-276, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 313-336 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    ISSN: 0730-2312
    Keywords: EST ; cDNA microarray ; RDA ; osteoblast differentiation ; pax-6 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Elucidation of the changes in gene expression associated with biological processes is a central problem in biology. Advances in molecular and computational biology have led to the development of powerful, high-thoughput methods for the analysis of differential gene expression. These tools have opened up new opportunities in disciplines ranging from cell and developmental biology to drug development and pharmacogenomics. In this review, the attributes of five commonly used differential gene expression methods are discussed: expressed sequence tag (EST) sequencing, cDNA microarray hybridization, subtractive cloning, differential display, and serial analysis of gene expression (SAGE). The application of EST sequencing and microarray hybridization is illustrated by the discovery of novel genes associated with osteoblast differentiation. The application of subtractive cloning is presented as a tool to identify genes regulated in vivo by the transcription factor pax-6. These and other examples illustrate the power of genomics for discovering novel genes that are important in biology and which also represent new targets for drug development. The central theme of the review is that each of the approaches to identifying differentially expressed genes is useful, and that the experimental context and subsequent evaluation of differentially expressed genes are the critical features that determine success. J. Cell. Biochem. Suppls. 30/31:286-296, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 338-340 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 1-7 
    ISSN: 0730-2312
    Keywords: cell stress ; heat shock ; σ32 ; magnetic fields ; ribonuclease protection assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mechanism of interaction between weak electromagnetic fields and cells is not understood. As a result, the health effect(s) induced by exposure to these fields remains unclear. In addition to questions relating to the site of initial magnetic field (MF) interactions, the nature of the cell's response to these perturbations is also unclear. We examined the hypothesis that the cells respond to MFs in a manner similar to other environmental stressors such as heat. Using the bacterium Escherichia coli, we examined the mRNA levels of σ32, a protein that interacts with RNA polymerase to help it recognize a variety of stress promoters in the cell. Our data show that the intracellular level of σ32 mRNA is enhanced following a 15-min exposure to a 60 Hz, 1.1 mT magnetic field. J. Cell. Biochem. 68:1-7, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    ISSN: 0730-2312
    Keywords: cathepsin-B ; tissue transglutaminase ; mesangial cell apoptosis ; mRNA expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mesangial matrix is a dynamic structure which modulates mesangial cell function. Since accumulation of matrix precedes the development of focal glomerulosclerosis, we studied the effect of different matrices on mesangial cell (MC) apoptosis. Suspended mesangial cells became apoptotic in a time dependent manner. Collagen type III did not modulate MC apoptosis when compared to cells grown on plastic. MCs grown on Matrigel, collagen type I and IV showed an increased number of apoptotic cells when compared to MCs grown on plastic. DNA end-labeling further confirmed these observations. MCs grown on Matrigel showed enhanced (P 〈 0.05) mRNA expression for tissue transglutaminase (TTG) and cathepsin-B. Mesangial cells grown on Matrigel also showed enhanced expression of superoxide dismutase (SOD). We conclude that mesangial cells require attachment to the matrix for their survival and alteration of the quality of matrix modulates mesangial cell apoptosis. J. Cell. Biochem. 68:22-30, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    ISSN: 0730-2312
    Keywords: gap junctions ; dye-coupling ; connexin43 ; parathyroid hormone ; prostaglandin E2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Connexin43 (Cx43) forms gap junctions that mediate intercellular communication between osteoblasts. We have examined the effects of prostaglandin E2 (PGE2) and parathyroid hormone (PTH) on gap junctional communication in the rat osteogenic sarcoma cells UMR 106-01. Incubation with either PGE2 or PTH rapidly (within 30 min) increased transfer of negatively charged dyes between UMR 106-01 cells. This stimulatory effect lasted for at least 4 h. Both PGE2 and PTH increased steady-state levels of Cx43 mRNA, but only after 2-4 h of incubation. Transfection with a Cx43 gene construct linked to luciferase showed that this effect of PTH was the result of transcriptional upregulation of Cx43 promoter. Stimulation of dye coupling and Cx43 gene transcription were reproduced by forskolin and 8Br-cAMP. Exposure to PGE2 for 30 min increased Cx43 abundance at appositional membranes in UMR 106-01, whereas total Cx43 protein levels increased only after 4-6 h of incubation with either PGE2 or PTH. Inhibition of protein synthesis by cycloheximide did not affect this early stimulation of dye coupling, but it significantly inhibited the sustained effect of PTH and forskolin on cell coupling. In summary, both PTH and PGE2, presumably through cAMP production, enhance gap junctional communication in osteoblastic cell cultures via two mechanisms: initial rapid redistribution of Cx43 to the cell membrane, and later stimulation of Cx43 gene expression. Modulation of intercellular communication represents a novel mechanism by which osteotropic factors regulate the activity of bone forming cells. J. Cell. Biochem. 68:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 50-61 
    ISSN: 0730-2312
    Keywords: Sp1 ; p62 ; interaction assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factor Sp1 plays an important role in the expression of many cellular genes. In studies of proteins that associate with Sp1, a 62-kDa glycoprotein was found in immunoprecipitates of Sp1. This protein was detected in these immunoprecipitates by the monoclonal antibody, RL2, which was originally raised against nuclear pore proteins but was subsequently found to recognize an epitope that contains O-linked N-acetylglucosamine (O-GlcNAc). The association of this protein with Sp1 could be blocked by SDS denaturation of the protein complex. Western blot analysis of the Sp1 immunoprecipitate using antibodies to p62 nucleoporin indicated that this nuclear pore protein associates with Sp1. Furthermore, immunoprecipitation of p62 nucleoporin resulted in the coprecipitation of Sp1. Recombinant p62, expressed as a GST-fusion protein using a vaccinia virus system, also interacted with both recombinant and native Sp1. This interaction between p62 and Sp1 required the C-terminus of p62 and the C-terminus was able to bind Sp1, albeit less efficiently than native p62. A mammalian two-hybrid interaction assay was devised in which p62 was fused to the Gal4 DNA-binding domain. This system also indicated that p62, through its C-terminus, interacts with Sp1 in the living cell. We propose that this interaction of a nuclear pore protein with Sp1 may reflect the nuclear organization required to bring transcribable DNA in contact with the transcription factors. J. Cell. Biochem. 68:50-61, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 83-89 
    ISSN: 0730-2312
    Keywords: pH ; osteoblasts ; collagen synthesis ; alkaline phosphatase activity ; glycolysis ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells. J. Cell. Biochem. 68:83-89, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    ISSN: 0730-2312
    Keywords: retinoic acid ; matrix metalloproteinases ; chondrocytes ; mRNA levels ; growth plate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures. When treated for 4 day periods on days 10 and 17, RA increased levels of an ∼70 kDa gelatinase activity. The N-terminal sequence of the first 20 amino acid residues of the purified enzyme was identical to that deduced from chicken MMP-2 cDNA. Time-course studies indicated that RA elevated MMP-2 activity levels in the cultures within 16 h. This increase was inhibited by cycloheximide and was enhanced by forskolin. The increase in MMP-2 activity induced by RA was accompanied by an increase in MMP-2 mRNA levels and was abolished by treatment with cycloheximide. This upregulation of MMP levels by RA in GP chondrocytes is consistent with its effects on osteoblasts and osteosarcoma cells and opposite its inhibitory effects on fibroblasts and endothelial cells. It may well be related to the breakdown of the extracellular matrix in the GP and would be governed by the availability of RA at the calcification front where extensive vascularization also occurs. J. Cell. Biochem. 68:90-99, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 110-120 
    ISSN: 0730-2312
    Keywords: cadmium ; zinc ; cell culture ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of ≥0.1 μM and Zn concentrations of ≥100 μM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype. J. Cell. Biochem. 68:110-120, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 128-137 
    ISSN: 0730-2312
    Keywords: oligodendrocytes ; cell cycle ; differentiation ; cyclin-dependent kinases ; cdk5 ; cdk2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Oligodendrocytes, the myelinating cells of the central nervous system, are terminally differentiated cells that originate through asynchronous waves of proliferation and differentiation of precursors present at birth. Withdrawal from cell cycle and onset of differentiation are tightly linked and depend on an intrinsic program modulated by the action of growth factors. p27 plays a central and obligatory role in the initiation of oligodendrocyte differentiation and cessation of proliferation. In this paper, we have characterized the role of modulation of cdk2 and cdk5 kinase activity during the process of oligodendrocyte precursor differentiation. As rat primary oligodendrocytes differentiate in culture there is a fall in cdk2 activity and a rise in cdk5 activity as well as an increase in the cdk inhibitor, p27 protein. The decline in cdk2 activity is not accompanied by a drop in cdk2 protein level, suggesting that it results from inhibition of cdk2 activation rather than decreased protein expression. Taken together, these data suggest that oligodendrocytes may withdraw from the cell cycle at G1-S transition through inactivation of cdk2 activity, possibly initiated by increasing amount of p27, and that cdk5 may have a role until now unrecognized in the differentiation of oligodendrocytes. J. Cell. Biochem. 68:128-137, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 164-173 
    ISSN: 0730-2312
    Keywords: melittin ; flow cytometry ; cytotoxicity ; immunotoxin ; HMy2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the cytolytic effects of the membrane-active peptide, melittin, on a human lymphoblastoid cell line (HMy2) in the context of the use of melittin as the toxic component of an immunotoxin. The toxicity of melittin for HMy2 cells was linear over the concentration range 0.875-3.5 μM. Increased incubation times failed to result in significant cell death at concentrations of melittin below 0.875 μM. Kinetic analysis revealed that the cytolytic activity of melittin was independent of time of exposure beyond 90 min. Flow cytometric analysis of HMy2 cells incubated with FITC-labeled melittin demonstrated that the cells could incorporate up to 2.5 × 105 FITC-melittin molecules per cell with no reduction in viability. Extrapolation of this data indicates that 106 melittin molecules per cell are required for maximum cytotoxicity to HMy2 cells. Further analysis of HMy2 cells that incorporated melittin, but that remained viable, revealed that these cells were able to reduce the number of melittin molecules per cell over time. The data indicate a potential threshold value for the number of melittin molecules that may be required to be delivered to the cell surface in the form of an immunotoxin if effective selective cell death is to be achieved. J. Cell. Biochem. 68:164-173, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 174-185 
    ISSN: 0730-2312
    Keywords: metallothionein ; isoform ; differential expression ; autoregulation ; Chinese hamster ovary cell ; cadmium-resistant cell ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transcription regulation of metallothionein (MT) isoform promoters was investigated in Chinese hamster ovary (CHO) K1 and MT gene amplified, cadmium-resistant (CdR) cells. The transfected promoter of Chinese hamster MTI and MTII genes can be activated in both cell lines by stimulation with Cd or Zn ions, although no MT mRNA can be detected in CHO K1 cells after challenge with metal ions. Neither MT promoter used in this study can be activated by induction with dexamethasone, regardless of whether a sequence homologous to glucocorticoid responsive element is present. During induction by metal ions, differential promoter activities of the MT genes occurs in both CHO K1 and CdR cells where MTII promoter has a stronger activity than that of MTI. As indicated by a time course study in both cell lines, the relative induction ratios of both MTI and MTII promoters are similar at each time interval. This result is consistent with a differential transcriptional factor-promoter interaction for the two MT promoters. By using the CHO K1 and CdR cells as a model system, the occurrence of autoregulation for yeast CUP1 (MT) gene was examined in mammalian cells. Both MT promoters consistently show a lower basal activity but a higher induction ratio in CHO K1 than CdR cells; a result different from that of yeast CUP1 gene. When MTF-1 mRNA was examined, no difference in relative quantity was observed in CHO K1 and in CdR cells treated with metal ions or with metal ions absent. J. Cell. Biochem. 68:174-185, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 195-199 
    ISSN: 0730-2312
    Keywords: 14-3-3 protein ; developmental regulation ; heart development ; Raf-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human heart cDNA sequencing yielded a cDNA clone that is similar in DNA and amino acid sequences to that of mouse 14-3-3 ε isoform. The 6xHis-tagged H1433ε recombinant protein was expressed in Escherichia coli and its size was approximately 30 kDa. From Northern blot results with human multiple tissues, human skeletal muscle was found to have the highest level of h1433ε mRNA expression, whereas Northern blots of human cancer cell lines detected the highest mRNA level of h1433ε in colorectal adenocarcinoma SW480. The protein expression level of h1433ε and Raf-1 is found to be regulated coordinately during rat heart development, and their protein expression was highest from 14.5 to 16.5 days postcoitum. J. Cell. Biochem. 68:195-199, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    ISSN: 0730-2312
    Keywords: transforming growth factor-β ; tumor necrosis factor-α ; phospholipase A2 ; arachidonic acid ; AACOCF3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steroid derivative 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is a regulator of bone biology, and there is evidence that 1,25(OH)2D3 modulates arachidonic acid metabolism in osteoblastic cell model systems and in bone organ cultures. In the present studies, 1,25(OH)2D3 decreased prostaglandin (PG) biosynthesis by normal adult human osteoblast-like (hOB) cell cultures by about 30%. The decrease was observed under basal incubation conditions, or in specimens stimulated by transforming growth factor-β1 (TGF-β) or by tumor necrosis factor-α (TNF). The inhibition of the TGF-β-stimulated PG production appeared to reflect a diminished efficiency of arachidonic acid conversion into PGs by the cells, while the efficiency of substrate utilization for PG biosynthesis was unaffected by 1,25(OH)2D3 pretreatment in the unstimulated samples, or in samples stimulated with TNF or with TNF plus TGF-β. Free arachidonic acid levels were decreased following 1,25(OH)2D3 pretreatment in the TNF stimulated samples. hOB cell phospholipase A2 activity was measured in subcellular fractions, and this activity was decreased by 20-25% in the 1,25(OH)2D3 pretreated samples. The addition of the selective inhibitor AACOCF3 to the phospholipase A2 assays provided evidence that it was the cytoplasmic isoform of the enzyme that was affected by the 1,25(OH)2D3 pretreatment of the hOB cells. Thus, 1,25(OH)2D3 regulation of hOB cell biology includes significant effects on arachidonic acid metabolism. In turn, this could influence the effects of other hormones and cytokines whose actions include the stimulated production of bioactive arachidonic acid metabolites. J. Cell. Biochem. 68:237-246, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 0730-2312
    Keywords: TGF-β ; transcription factor ; rapid regulation ; tumor suppressor ; osteoblasts ; immunohistochemistry ; breast cancer stage ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This laboratory has previously identified a novel TGF-β inducible early gene (TIEG) in human osteoblasts [Subramaniam et al. (1995): Nucleic Acids Res 23:4907-4912]. Using TIEG specific polyclonal antibody and immunoprecipitation methods in normal human fetal osteoblast cells (hFOB cells), we have now demonstrated that TIEG encodes a 72-kDa protein whose levels are transiently increased at as early as 2 h of TGF-β treatment. Polarized confocal microscopic analysis of hFOB cells shows a nuclear localized TIEG protein in untreated cells under the conditions described under Methods. Interestingly, the levels of TIEG protein in the nuclei increase when the cells are treated with TGF-β1 for 2 h. In contrast, similar analyses of untreated human keratinocytes show a cytoplasmic localized TIEG protein that appears to be translocated to the nucleus after H2O2 treatment. Additional immunohistochemical studies have demonstrated that TIEG protein is expressed in epithelial cells of the placenta, breast, and pancreas, as well as in osteoblast cells of bone and selected other cells of the bone marrow and cerebellum with some cells showing a cytoplasmic localization and others a nuclear localization. All cells of the kidney display negative staining for this protein. Interestingly, a stage specific expression of TIEG protein is found in a dozen breast cancer biopsies, using immunohistochemistry. The cells in normal breast epithelium displays a high expression of TIEG protein, those in the in situ carcinoma display less than one-half of the levels, and those in the invasive carcinoma show a complete absence of the TIEG protein. TIEG has been localized to chromosome 8q22.2 locus, the same locus as the genes involved in osteopetrosis and acute myeloid leukemia and close to the c-myc gene locus and a locus of high polymorphism in cancer biopsies. The correlation between the levels of TIEG protein and the stage of breast cancer, its prime location in human chromosome 8q22.2, and past studies with pancreatic carcinoma, suggests that TIEG may play a role in tumor suppressor gene activities, apoptosis, or some other regulatory function of cell cycle regulation. J. Cell. Biochem. 68:226-236, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 259-268 
    ISSN: 0730-2312
    Keywords: multifunctional Ca2+/calmodulin-dependent protein kinase ; cardiac isoforms ; muscle differentiation ; cell line Hgc2 ; adult rat heart ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Despite their important role in controlling the cardiac Ca2+ homeostasis, presence and functions of individual isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in the heart are not well studied. Here we report on expression of isoforms of the δ class in two differentiation states of the embryonic rat heart-derived cell line H9c2 compared to adult rat heart. Reverse transcription coupled polymerase chain reaction analysis revealed specific expression patterns of four variants of the δ class (δB, δC, δ4, δ9) in adult rat heart, H9c2 myoblasts, and skeletal muscle-like H9c2 myotubes. δC was identified as a common isoform with higher amounts in H9c2 cells and the prominent one in myoblasts. In contrast, expression of δ9 accompanied cardiac as well as skeletal muscle differentiation. Expression of δB, however, was representative for differentiated cardiac muscle, whereas δ4 expression coincided with differentiation into the skeletal muscle-like state. Our results demonstrate differentiation-dependent isoform expression of the δ class of the multifunctional Ca2+/calmodulin-dependent protein kinase of muscle. The identification of cardiac target proteins for this kinase, e.g. the α1-subunit of the L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+-ATPase, phospholamban and the ryanodine receptor define H9c2 myoblasts as a suitable model system for further functional characterization of the identified cardiac δ isoforms. J. Cell. Biochem. 68:259-268, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We are using viral oncogene probes to study the pathways by which osteoblast-specific gene expression is induced in ascorbic acid-treated MC3T3-E1 cells. The 12S product of the adenovirus E1A gene binds directly to key cellular regulators and, as a result, represses tissue specific gene expression and blocks differentiation in a wide variety of cell types. The main cellular targets of the E1A 12S product are the pRB family and p300/CBP family. The p300 family appears to be the primary target for E1A-mediated repression of tissue-specific gene expression in a variety of cell types. We have generated MC3T3-E1 cell lines that stably express either the wild-type 12S product or a mutant that targets p300/CBP, but not the pRB family. Using these constructs to dissect osteoblast differentiation, we found that targeting of p300/CBP appears to be sufficient to repress alkaline phosphatase expression, although a low but functional level of expression can be maintained if the pRB family is not targeted as well. Induction of alkaline phosphatase expression and activity can be dissociated from expression of late-stage markers such as osteocalcin and osteopontin. Surprisingly, cell lines exhibiting severe repression of alkaline phosphatase activity differentiate to a mineral-secreting phenotype much like normal MC3T3-E1 cells. Osteopontin induction is dependent on at least a minimal level of alkaline phosphatase activity, although it is not dependent on induction of alkaline phosphatase at the RNA level. If alkaline phosphatase is supplied exogenously, osteopontin expression can be induced in conditions in which endogenous alkaline phosphatase is severely repressed. J. Cell. Biochem. 68:269-280, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    ISSN: 0730-2312
    Keywords: PEPCK ; adipocytes ; transcription ; fatty acids ; fibrates ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phosphoenolpyruvate carboxykinase (PEPCK) exerts a glyceroneogenic function in adipocytes in which transcription of its gene is increased by unsaturated fatty acids and fibrates. We used cultured rat adipose tissue fragments and 3T3-F442A adipocytes to show that the antidiabetic thiazolidinedione BRL 49653, a ligand and an activator of the γ isoform of peroxisome proliferator activated receptors (PPARγ), is a potent inducer of PEPCK mRNA. In 3T3-F442A adipocytes, the effect of BRL 49653 is rapid and concentration dependent, with a maximum reached at 1 μM and a half-maximum at 10-100 nM. PEPCK mRNA is similarly induced by the natural ligand of PPARγ, the 15-deoxy-Δ12-14 prostaglandin J2. These observations strongly suggest that PPARγ is a primary regulator of PEPCK gene expression in adipocytes. Dexamethasone at 10 nM repress induction of PEPCK mRNA by 1 μM BRL 49653, 0.32 mM oleate, or 1 mM clofibrate, in a cycloheximide-independent manner. The antiglucocorticoid RU 38486 prevents dexamethasone action, demonstrating involvement of the glucocorticoid receptor. Stable transfectants of 3T3-F442A adipocytes bearing -2100 to +69 base pairs of the PEPCK gene promoter fused to the chloramphenicol acetyltransferase (CAT) gene respond to 1 μM BRL 49653 or 1 mM clofibrate by a large increase in CAT activity, which is prevented by the simultaneous addition of 10 nM dexamethasone. Hence, in adipocytes, glucocorticoids act directly through the 5′-flanking region of the PEPCK gene to repress, in a dominant fashion, the stimulation of PEPCK gene transcription by thiazolidinediones and fibrates. J. Cell. Biochem. 68:298-308, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 339-354 
    ISSN: 0730-2312
    Keywords: glutathione ; reactive oxygen intermediates ; HIV ; signal transduction ; cytokines ; redox state ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Both clinical and experimental evidence indicates that AIDS-related Kaposi's sarcoma (AIDS-KS) has a multifactorial pathogenesis with factors such as HIV viral load, latent virus induction, and opportunistic infections contributing to disease progression. However, a consistent feature that unites these apparently diverse putative etiologic agents is sustained serum elevations of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). While virtually every cell responds to TNF-α with gene activation, the extent of TNF-α-mediated cellular signaling is regulated by a delicate balance between signal activation and signal arresting events. Reactive oxygen intermediates (ROI), which are generated as a consequence of TNF-α membrane interaction, are part of this TNF-α-initiated cellular activation cascade. Previous studies in our laboratory have shown that AIDS-KS cells possess impaired oxygen intermediate scavenging capacities, thereby establishing conditions permissive for the intracellular retention of ROI. In this study, we used cellular capacity to upregulate the cytoprotective enzyme superoxide dismutase (SOD) to address the extent of cellular response to TNF-α. Concurrent with the SOD analyses, nucleotide profiles were obtained to assess cellular bioenergetic responses during TNF-α challenge. Proliferative growth levels of mitochondrial (Mn)SOD activities showed an activity spectrum ranging from lowest activity in AIDS-KS cells, to intermediate levels in matched, nonlesional cells from the AIDS-KS donors, to highest activities in HIV- normal fibroblasts. In contrast, following TNF-α challenge, the AIDS-KS and KS donor nonlesional cells showed a 11.89- and 5.86-fold respective increase in MnSOD activity, while the normal fibroblasts demonstrated a 1.35-fold decrease. Subsequent thiol redox modulation studies showed that only the normal fibroblast cultures showed a potentiation of TNF-α-mediated MnSOD upregulation following GSH depletion. In addition, provision of the GSH precursor, N-acetylcysteine during TNF-α challenge only diminished MnSOD activity and mitochondrial compartmentalization in the AIDS-KS cells, a finding that likely reflects the lower levels of reduced thiols in this cellular population. Our data, which show that a perturbation in their cellular thiol redox status accentuates AIDS-KS cellular responsiveness to TNF-α, suggest a biochemical rationale for the recognized TNF-α AIDS-KS clinical correlation. J. Cell. Biochem. 68:339-354, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 366-377 
    ISSN: 0730-2312
    Keywords: PC-1 ; insulin action ; insulin resistance ; insulin receptor ; tyrosine kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366-377, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 389-401 
    ISSN: 0730-2312
    Keywords: cytoskeleton ; cell motility ; intracellular dynamics ; stress fibers ; heavy chain ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 403-410 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; gene therapy ; collagen ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; transforming growth factor ; decorin ; cardiomyopathy ; hypertrophy ; ischemia ; fibrosis; functional genomics ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure.There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403-410, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 411-426 
    ISSN: 0730-2312
    Keywords: bone marrow stroma ; human ; differentiation ; TGF-β ; BMP-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411-426, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    ISSN: 0730-2312
    Keywords: mechanical strain ; interleukin (IL)-α and β gene expression ; proliferation ; protein synthesis ; morphology ; keratinocyte biology ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent studies in our laboratory have demonstrated that mechanical strain alters many facets of keratinocyte biology including proliferation, protein synthesis, and morphology. IL-1 is known to play an important role in the autocrine regulation of these basic cellular properties under basal and stimulated conditions. However, it is not known whether IL-1 plays a role in strain-induced alteration of keratinocyte biology. Thus, the objective of this study was to test the hypothesis that cyclic strain stimulates IL-1 expression and that strain-induced changes in keratinocyte function is regulated by IL-1. To test this hypothesis, we examined the effect of cyclic strain (10% average deformation) on keratinocyte IL-1 gene expression and the effect of neutralizing antibodies of IL-1α and IL-1β on strain-induced changes in keratinocyte proliferation, morphology, and orientation. Northern blot analyses demonstrated that steady state levels of IL-1α and β mRNA were elevated by 4 h, peaked at 12 h of cyclic strain (IL-1α, 304 ± 14.2%; IL-1β, 212 ± 5.6% increase vs. static controls) and decreased gradually by 24 h. IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.01 μg/ml) significantly blocked strain-induced keratinocyte proliferation as well as the basal rate of proliferation. In contrast, IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.1 μg/ml) had no effect on strain-induced morphological changes such as elongation and alignment. We conclude that mechanical strain induces IL-1 mRNA expression in keratinocytes. The role of IL-1 in mediating strain-induced changes in keratinocyte biology remains to be determined but appears to be independent of morphological changes. J. Cell. Biochem. 69:95-103, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    ISSN: 0730-2312
    Keywords: chromosome architecture ; disassembly ; reassembly ; proteases ; in vitro model ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Topoisomerase II has been suggested to play a major role in chromosome organization based on its DNA decatenating activity and its ability to mediate direct binding interactions between DNA and nuclear matrix. However, this latter point remains controversial. Here we address the question of whether the chromatin binding activity of Topoisomerase II is sufficient to modify chromosome form using whole mammalian chromosomes in vitro. Intact chromosomes were microsurgically removed from living cells and disassembled by treatment with protease or heparin. When these disassembled chromosomes were incubated with recombinant human Topoisomerase II, the enzyme became incorporated into chromatin and reassembly resulted, leading to almost complete restoration of pre-existing chromosome shape and position within minutes. Chromosome reconstituition by Topoisomerase II was dose-dependent, saturable, and appeared to be controlled stoichiometrically, rather than enzymatically. Similar reassembly was observed in the absence of ATP and when a catalytically inactive thermosensitive Topoisomerase II mutant was used at the restrictive temperature. Chromosome recondensation also could be induced after the strand-passing activity of Topoisomerase II was blocked by treatment with an inhibitor of its catalytic activity, amsacrine. When a non-hydrolyzable β,γ-imido analog of ATP (AMP-PNP) was used to physiologically fix bound Topoisomerase II enzyme in a closed form around DNA, subsequent chromosome disassembly was prevented in the presence of high salt. These data suggest that Topoisomerase II may control higher order chromatin architecture through direct binding interactions, independently of its well-known catalytic activity. J. Cell. Biochem. 69:127-142, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 169-180 
    ISSN: 0730-2312
    Keywords: growth factor ; bone ; osteoblast ; inflammation ; alkaline phosphatase ; differentiation ; proliferation ; PDGF ; mineralized nodules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Platelet-derived growth factor (PDGF) stimulates chemotaxis and proliferation of osteoblasts, and induces bone formation in vivo. To determine how PDGF might regulate these cells, the effect of PDGF on long-term mineralizing cultures of fetal rat osteoblastic cells was examined. Although PDGF increased cell proliferation in these cultures, continuous treatment with PDGF caused a dose-dependent decrease in mineralized nodule formation. When cells were treated with multiple, brief (1 day) exposures to PDGF at the osteoblast differentiation stage, there was a significant 50% increase in mineralized nodule area. Based on modulation of alkaline phosphatase activity it appears that longer-term exposure to PDGF reduces mineralized nodule formation largely by inhibiting differentiated osteoblast function, while short-term exposure enhances proliferation without inhibiting the differentiated phenotype. Thus, the ultimate affect of PDGF on bone formation is likely to reflect two processes: a positive effect through enhancing cell number or a negative effect by inhibiting differentiated function. The inhibitory effect of PDGF on formation of a mineralized matrix is unlikely to be simply a result of enhanced proliferation of “fibroblastic” cells since cultures treated with PDGF for 3 days and then transferred to new plastic dishes exhibited a 70% increase in mineralized nodule area compared to controls. These results would predict that multiple, brief exposures to PDGF would enhance bone formation in vivo, while prolonged exposure to PDGF, which is likely to occur in chronic inflammation, would inhibit differentiated osteoblast function and limit bone regeneration. J. Cell. Biochem. 69:169-180, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 189-200 
    ISSN: 0730-2312
    Keywords: peroxisome proliferator activated receptor ; retinoid x receptor ; retinoic acid receptor ; liver hyperplasia ; hepatocarcinoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)-induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFκB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARα and RXRα genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein-bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARα/RXRα target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXRγ gene was also down-regulated, but the RARα, β, and γ and PPARβ and γ genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARα/RXRα-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver. J. Cell. Biochem. 69:189-200, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 233-243 
    ISSN: 0730-2312
    Keywords: histamine ; polyamines ; cytochrome P450 ; cell growth ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Histamine and polyamines have been implicated in the mediation of cell proliferation. Our previous work linked the growth-modulatory effects of histamine with its binding to intracellular sites in microsomes and nuclei of various tissues. In this study, we identify cytochrome P450 enzymes as a major component of microsomal intracellular sites in hepatocytes and demonstrate that polyamines compete with high affinity for histamine binding to them. Spectral measurement of histamine binding to P450 in liver microsomes resolved high and intermediate affinity binding sites (Ks1 = 2.4 ± 1.6 μM; Ks2 = 90 ± 17 μM) that corresponded to microsomal binding sites (Kd1 = 1.0 ± 0.9 μM; Kd2 = 57 ± 13 μM) resolved by 3H-histamine binding; additional low affinity (Kd3 ∼ 3 mM), and probably physiologically irrelevant, sites were resolved only by 3H-histamine radioligand studies. As determined spectrally, treatment of microsomes with NADPH/carbon monoxide decreased histamine binding to P450 by about 90% and, as determined by 3H-histamine binding, abolished the high affinity sites and reduced by 85% the number of intermediate sites. Spermine competed potently for 3H-histamine binding: in microsomes, Ki = 9.8 ± 5.8 μM; in nuclei, Ki = 13.7 ± 3.1 μM; in chromatin, Ki = 46 ± 33 nM. Polyamines inhibited the P450/histamine absorbance complex with the rank order of potency: spermine 〉 spermidine ≫ putrescine. In contrast, histamine did not compete for 3H- spermidine binding in nuclei or microsomes, suggesting that polyamines modulate histamine binding allosterically. We propose that certain P450 isozymes that modulate gene function by controlling the level of oxygenated lipids, represent at least one common intracellular target of growth-regulatory endogenous bioamines and, as shown previously, of exogenous growth-modulatory drugs including antiestrogens, antiandrogens, and certain antidepressants and antihistamines. J. Cell. Biochem. 69:233-243, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 252-259 
    ISSN: 0730-2312
    Keywords: bisphosphonate ; prostaglandin F2α ; interleukin-6 ; phospholipase D ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In previous studies, we have reported that PGF2α stimulates phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein in osteoblast-like MC3T3-E1 cells, and that PGF2α and PGE1 induce interleukin-6 (IL-6) synthesis via activation of protein kinase C and protein kinase A, respectively. In the present study, we investigated the effect of tiludronate, a bisphosphonate known to inhibit bone resorption, on the PGF2α- and PGE1-induced IL-6 synthesis in these cells. Tiludronate significantly suppressed the PGF2α-induced IL-6 secretion in a dose-dependent manner in the range between 0.1 and 30 μM. However, the IL-6 secretion induced by PGE1 or (Bu)2cAMP was hardly affected by tiludronate. The choline formation induced by PGF2α was reduced by tiludronate dose-dependently in the range between 0.1 and 30 μM. On the contrary, tiludronate had no effect on PGF2α-induced formation of inositol phosphates. Tiludronate suppressed the choline formation induced by NaF, known as an activator of heterotrimeric GTP-binding protein. However, tiludronate had little effect on the formation of choline induced by TPA, a protein kinase C activator. Tiludronate significantly inhibited the NaF-induced IL-6 secretion in human osteoblastic osteosarcoma Saos-2 cells. These results strongly suggest that tiludronate inhibits PGF2α-induced IL-6 synthesis via suppression of phosphatidylcholine-hydrolyzing phospholipase D activation in osteoblasts, and that the inhibitory effect is exerted at the point between heterotrimeric GTP-binding protein and phospholipase D. J. Cell. Biochem. 69:252-259, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    ISSN: 0730-2312
    Keywords: HB-EGF ; cleavage-secretion ; PKC ; ErbB1 ; EGF receptor ; matrix metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The phorbol ester, tetradecanoyl-phorbol 13-acetate (TPA), stimulates rapid proteolytic processing of the transmembrane, pro- form of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at cell surfaces, suggesting the involvement of protein kinase C (PKC) isoforms in the HB-EGF secretion mechanism. To test this possibility, we expressed a chimeric protein, consisting of proHB-EGF fused to placental alkaline phosphatase (AP) near the amino terminus of processed HB-EGF, in NbMC-2 prostate epithelial cells. The proHB-EGF-AP chimera localized to plasma membranes and functioned as a diphtheria toxin receptor. Secreted HB-EGF-AP bound to heparin and exhibited potent growth factor activity. The presence of the AP moiety allowed highly quantitative measurements of cleavage-secretion responses of proHB-EGF to extracellular stimuli. As expected, rapid secretion of HB-EGF-AP was induced in a time- and dose-dependent manner by TPA. However, this was also observed with the Ca2+ionophore, ionomycin, suggesting the involvement of extracellular Ca2+ ions in the secretion mechanism. Ionomycin-induced secretion was inhibited by extracellular calcium chelation but not by the PKC inhibitors, GF109203X, staurosporine, or chelerythrine. The TPA-mediated secretion effect was inhibited by staurosporine, GF109203X, and by pretreatment with TPA, but not by calcium chelation. A small secretion response was induced by thapsigargin, which releases Ca2+ from intracellular stores, but this was completely eliminated by extracellular calcium chelation. Ionomycin- and TPA-induced HB-EGF-AP secretion was not dependent on the presence of the proHB-EGF cytoplasmic domain and was specifically inhibited by the metalloproteinase inhibitors 1,10-phenanthroline and tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that extracellular Ca2+ influx activates a membrane-associated metalloproteinase to process proHB-EGF by a pathway that does not require PKC. J. Cell. Biochem. 69:143-153, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...