Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 71 (Oct. 1999), p. 147-172 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 555 (Sept. 2007), p. 35-40 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We present a study of the micro-structural changes induced in Cr-N layers by irradiationwith argon ions. The layers were deposited by reactive ion sputtering on (100) Si wafers, to athickness of 240-280 nm, at different nitrogen partial pressures and different substrate temperatures.The samples were subsequently irradiated with 120 keV Ar+, to 1x1015 and 1x1016 ions/cm2.Structural characterization was performed with Rutherford backscattering spectroscopy, x-raydiffraction analysis and transmission electron microscopy, and we also did electrical resistivitymeasurements on the samples. It has been found that the layers grow in the form of a polycrystallinecolumnar structure, with a columnar width of a few tens of nm. The layer composition, Cr2N orCrN, strongly depends on the nitrogen partial pressure during deposition. Ion irradiation induceslocal micro-structural changes, formation of nano-particles and defects, though the structures retaintheir polycrystalline nature. The induced crystalline defects yield an increase of electrical resistivityafter ion irradiation
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 555 (Sept. 2007), p. 59-64 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The effects of nitrogen pre-implantation of AISI C1045 steel substrates on the propertiesof deposited TiN coatings were investigated. Nitrogen ion implantations were performed at 40 keV,to the fluences from 5x1016 – 5x1017 ions/cm2. On so prepared substrates we deposited 1.3 μm thickTiN layers by reactive sputtering. Structural characterizations of the samples were performed bygrazing incidence X-ray diffraction analysis (GXRD), standard X-ray diffraction analysis (XRD),and scanning electron microscopy (SEM). Microhardness was measured by Vicker’s method. Theobtained results indicate the formation of iron-nitrides in the near surface region of the substrates,more pronounced for higher implanted fluences. The structure of the deposited TiN coatings showsa strong dependence on the pre-implantation of the substrates, which is attributed to the changedlocal structure at the surface. Ion implantation and deposition of hard TiN coatings induce anincrease of the microhardness of this low performance steel of more than eight times
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 282-283 (May 1998), p. 153-156 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 518 (July 2006), p. 155-160 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper we present a study of the formation of TiN thin films during the IBADprocess. We have analyzed the effects of process parameters such as Ar+ ion energy, ion incidentangle, Ti evaporation rates and partial pressure of N2 on preferred orientation and resistivity of TiNlayers. TiN thin films were grown by evaporation of Ti in the presence of N2 and simultaneouslybombarded with Ar+ ions. Base pressure in the IBAD chamber was 1⋅10-6 mbar. The partial pressureof Ar during deposition was (3.1 – 6.6)⋅10-6 mbar and partial pressure of N2 was 6.0⋅10-6 -1.1⋅10-5 mbar. The substrates used were Si (100) wafers. TiN thin layers were deposited to athickness of 85 – 360 nm at deposition rates of Ti from 0.05 to 0.25nm/s. Argon ion energy wasvaried from 1.5 to 2.0 keV and the angle of ion beam incidence from 0 to 30o. All samples wereanalyzed by Rutherford backscattering spectrometry (RBS). The changes in concentration profilesof titanium, nitrogen and silicon were determined with 900 keV He++ ion beam. The RBS spectrawere analyzed with the demo version of WiNDF code. We have also used X-ray diffraction (XRD)for phase identification. The resistivity of samples was measured with four-point probe method. Theresults clearly show that TiN thin layer grows with (111) and (200) preferred orientation, dependingon the IBAD deposition parameters. Consequently, the formation of TiN thin layers with wellcontrolledcrystalline orientation occurs. Also, it was found that the variations in TiN film resistivitycould be mainly attributed to the ion beam induced damage during the IBAD process
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This article describes the L3A experimental facility for surface modification of materials at the Vinca Institute of Nuclear Sciences, in Belgrade. This facility was completed and put into operation in May 1998. It is connected to the mVINIS ion source, an electron cyclotron resonance ion source capable of producing a wide range of multiply charged ions from gaseous and solid substances. The heavy ion beams obtained from mVINIS are separated by charge to mass ratio (q/m) and transported to the target chamber for sample irradiation and modification. The target chamber is equipped with a multipurpose target holder, an electron-beam evaporation source for thin layer deposition, a residual gas analyzer, and other auxiliary equipment. There is also an additional low energy argon ion source for target preparation/sputtering and for ion beam assisted deposition. In this article we describe the layout and performances of the L3A facility, the experience gained during 1 yr of operation, and the requirements imposed by the current and future experimental programs. Currently, there are 24 experimental programs competing for the ion beam time at the L3A facility. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 57 (1985), S. 1252-1255 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Epitaxial silicon films were grown on (100) silicon wafers at temperatures between 650 and 700 °C without the need of special cleaning procedures. Deposition rates were from 30 to 80 nm/min. The structure of films was analyzed by Rutherford backscattering, transmission electron microscopy, and secondary ion mass spectroscopy. The films were doped by ion implantation. Electrical activity, Hall mobility, and sheet resistivity of the doped layers were measured. Both structural and electrical characterization yielded results indistinguishable from good-quality bulk wafers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 4474-4484 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A detailed study of the formation of β-FeSi2 films by ion-beam mixing of Fe/Si bilayers with noble gas ions is presented. Fe films of 35–50 nm deposited on Si (100) were irradiated with 80–700 keV Ar, Kr, or Xe ions in a wide temperature interval, from room temperature to 600 °C. The structures were analyzed by Rutherford backscattering spectroscopy, x-ray diffraction, conversion electron Mössbauer spectroscopy, elastic recoil detection analysis, cross-section high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. Already after Xe irradiation at 300 °C the whole Fe layer is transformed to a mixture of Fe3Si, cursive-epsilon-FeSi, and β-FeSi2 phases. At 400–450 °C, a unique, layer by layer growth of β-FeSi2 starting from the surface was found. A full transformation of 35 nm Fe on Si to a 105 nm β-FeSi2 layer was achieved by irradiation with 205 keV Xe to 2×1016 ions/cm2, at a temperature of 600 °C. The fully ion-beam grown layers exhibit a pronounced surface roughness, but a sharp interface to Si. This structure is assigned to a growth of β-FeSi2 grains in a local surrounding of interdiffused silicon. Rapid diffusion of silicon to the surface was observed during all ion irradiations. Single-phase β-FeSi2 layers were also synthesized by vacuum annealing for 2 h at 600 °C of 35 nm Fe/Si bilayers premixed with Xe at 450 °C. In this case, the layers form with a smoother surface topography. It is concluded that ion-beam mixing can be used successfully for growth of β-FeSi2 layers at moderate temperatures, either directly or combined with postirradiation annealing. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 1438-1440 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report here the synthesis and the measurements of the microstructural and optical properties of a promising semiconductor, amorphous-iron disilicide. The material was obtained by ion-beam mixing of Fe layers on Si, with Ar8+ ions, at 300 °C. Optical absorption measurements indicate a semiconductor with a direct band gap of 0.88 eV. The significance of this discovery is that it demonstrates the existence of such a material. It should be possible to synthesize by other techniques and could be applied in large-area electronics. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Quantitative Spectroscopy and Radiative Transfer 42 (1989), S. 429-435 
    ISSN: 0022-4073
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...