Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (5,230)
  • Cell & Developmental Biology  (2,833)
  • Engineering General  (1,423)
  • Computational Chemistry and Molecular Modeling  (973)
  • Nuclear reactions
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 84 (1998), S. 199-206 
    ISSN: 1572-9672
    Keywords: Nuclear reactions ; Nucleosynthesis ; Abundances ; Stars:Evolution ; Interior ; Rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We first recall the observational and theoretical facts that constitute the so-called 3He problem. We then review the chemical anomalies that could be related to the destruction of 3He in red giants stars. We show how a simple consistent mechanism can lead to the destruction of 3He in low mass stars and simultaneously account for the low 12C/13C ratios and low lithium abundances observed in giant stars of different populations. This process should both naturally account for the recent measurements of 3He/H in galactic HII regions and allow for high values of 3He observed in some planetary nebulae. We propose a simple statistical estimation of the fraction of stars that may be affected by this process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: cathepsin-B ; tissue transglutaminase ; mesangial cell apoptosis ; mRNA expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mesangial matrix is a dynamic structure which modulates mesangial cell function. Since accumulation of matrix precedes the development of focal glomerulosclerosis, we studied the effect of different matrices on mesangial cell (MC) apoptosis. Suspended mesangial cells became apoptotic in a time dependent manner. Collagen type III did not modulate MC apoptosis when compared to cells grown on plastic. MCs grown on Matrigel, collagen type I and IV showed an increased number of apoptotic cells when compared to MCs grown on plastic. DNA end-labeling further confirmed these observations. MCs grown on Matrigel showed enhanced (P 〈 0.05) mRNA expression for tissue transglutaminase (TTG) and cathepsin-B. Mesangial cells grown on Matrigel also showed enhanced expression of superoxide dismutase (SOD). We conclude that mesangial cells require attachment to the matrix for their survival and alteration of the quality of matrix modulates mesangial cell apoptosis. J. Cell. Biochem. 68:22-30, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Keywords: Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: somatostatin ; receptor isotypes ; adenylyl cyclase ; Interleukin-2 (IL-2) ; proliferation ; Jurkat cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The neuropeptide somatostatin (SRIF) modulates normal and leukemia T cell proliferation. However, neither molecular isotypes of receptors nor mechanisms involved in these somatostatin actions have been elucidated as yet. Here we show by using RT-PCR approach that mitogen-activated leukemia T cells (Jurkat) express mRNA for a single somatostatin receptor, sst3. This mRNA is apparently translated into protein since specific somatostatin binding sites (KI1 = 78 ± 3 pM) were detected in semipurified plasma membrane preparations by using 125I-Tyr1-SRIF14 as a radioligand. Moreover, somatostatin inhibits adenylyl cyclase activity with similar efficiency (IC50 = 23 ± 4 pM) thus strongly suggesting a functional coupling of sst3 receptor to this transduction pathway. The involvement of sst3 receptor in immuno-modulatory actions of somatostatin was assessed by analysis of neuropeptide effects on IL-2 secretion and on proliferation of mitogen-activated Jurkat cells. Our data show that in the concentrations comprised between 10 pM and 10 nM, somatostatin potentiates IL-2 secretion. This effect is correlated with somatostatin-dependent increase of Jurkat cell proliferation since the EC50 concentrations for both actions were almost identical (EC50 = 22 ± 9 pM and EC50 = 12 ± 1 pM for IL-2 secretion and proliferation, respectively). Altogether, these data strongly suggest that in mitogen-activated Jurkat cells, somatostatin increases cell proliferation through the increase of IL-2 secretion via a functional sst3 receptor negatively coupled to the adenylyl cyclase pathway. J. Cell. Biochem. 68:62-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 74-82 
    ISSN: 0730-2312
    Keywords: cell culture ; nuclei ; nuclear degradation ; endonucleases ; polycytosine degradation ; differentiation ; cornification ; stratum corneum ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Desquamin is a glycoprotein that we have isolated from the upper granular layer and the stratum corneum of human epidermis; it is not ordinarily expressed in submerged cultures, whose terminal differentiation stops short of formation of these layers. The exogenous addition of desquamin to human cultured keratinocytes extended their maturation, and hematoxylin staining indicated a loss of cell nuclei. For confirmation, cultured cells were lysed in situ, and the nuclei were incubated with desquamin for several days, then stained with hematoxylin. Damage to the nuclei was evident: the nuclear inclusions remained intact, while the surrounding basophilic nuclear matrix was degraded. Desquamin was then tested directly for nuclease activity. Ribonuclease activity was determined by incubating desquamin with human epidermal total RNA and monitoring the dose-dependent disappearance of the 28S and 18S ribosomal RNA bands in an agarose/formaldehyde gel. On RNA-containing zymogels, we confirmed the RNase activity to be specific to desquamin. Using synthetic RNA homopolymers, we found the active RNase domains to be limited to cytosine residues. On the contrary, DNA was not degraded by an analogous procedure, even after strand-separation by denaturation. J. Cell. Biochem. 68:74-82, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 100-109 
    ISSN: 0730-2312
    Keywords: carcinogens ; mitochondrial DNA ; nuclear DNA ; LINE ; mobile elements ; cancer ; Huntington's disease ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear DNA of normal and tumor mouse and rat tissue was examined for mitochondrial-DNA-like inserts by means of the Southern blot technique. The two probes were 32P-labeled cloned mitochondrial DNA. KpnI, which doesn't cut either mitochondrial DNA, was one of the restriction enzymes, while the enzymes that fragment mitochondrial DNA were for mouse and rat PstI and BamHI, respectively. When KpnI alone was used in the procedure a nuclear LINE family whose elements had mitochondrial-DNA-like insertions was selected. Such elements were much more abundant in tumor than in normal tissue. The results with PstI alone and BamHI alone and each combined with KpnI indicated that there were mobile LINE elements with mitochondrial-DNA-like inserts in the nuclear genome of tumor. The mouse tissues were normal liver and a transplantable lymphoid leukemic ascites cell line L1210 that had been carried for 40 years. The rat tissues were normal liver and a hepatoma freshly induced by diethylnitrosoamine in order to minimize the role of 40 years of transplantation. Our unitary hypothesis for carcinogenesis of 1971, which suggested these experiments, has been augmented to include mobile nuclear elements with inserts of mitochondrial-DNA-like sequences. Such elements have been related to diseases of genetic predisposition such as breast cancer and Huntington's disease. J. Cell. Biochem. 68:100-109, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 121-127 
    ISSN: 0730-2312
    Keywords: heme oxygenase ; stress protein ; overexpression ; oxidative injury ; endothelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heme oxygenase (HO-1) is a stress protein that has been suggested to participate in defense mechanisms against agents that induce oxidative injury such as hemoglobin/heme, hypoxia-ischemia and cytokines. Overexpression of HO-1 in endothelial cells (EC) might, therefore, protect against oxidative stress produced under these pathological conditions, by generation of CO, a vasodilator, and bilirubin, which has antioxidant properties that enhance blood vessel formation to counteract hypoxia-induced injury. A plasmid containing the cytomegalovirus promoter (pCMV) neomycin human HO-1 gene complexed to cationic liposomes, lipofectin, was used to transfect rabbit coronary microvessel EC. Cells transfected with human HO-1 gene demonstrated a twofold increase in HO activity and maintained a similar phenotype as in the nontransfected cells. Cell number in transfected cells with human HO-1 gene increased by about 45%, as compared to nontransfected or those transfected with control pCMV. Transfected and nontransfected EC revealed a similar response to basic fibroblast growth factor (bFGF) in capillary formation. However, transfected cells with the human HO-1 gene exhibited a twofold increase in blood vessel formation. The angiogenic response of EC to overexpression of HO-1 gene provides direct evidence that the inductive form of HO-1 following injury represents an important tissue adaptive mechanism for moderating the severity of cell damage produced in inflammatory reaction sites of hemorrhage, thrombosis and hypoxic-ischemia. Thus, HO-1 may participate in the regulation of EC activation, proliferation and angiogenesis. J. Cell. Biochem. 68:121-127, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: tyrosine phosphorylation ; insulin signaling ; tyrosine kinase ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The recently identified 53-kDa substrate of the insulin receptor family was further characterized in several retroviral-generated stable cell lines overexpressing the wild type and various mutant forms of the protein. To facilitate the study of its subcellular localization in NIH3T3 cells overexpressing insulin receptor, a myc epitope-tag was added to the carboxy terminus of the 53-kDa protein. Like the endogenous protein in Chinese hamster ovary cells, the expressed myc-tagged 53-kDa protein was found partially in the particulate fraction and was tyrosine phosphorylated in insulin-stimulated cells. Immunofluorescence studies showed for the first time that a fraction of the 53-kDa protein was localized to the plasma membrane. Confocal microscopy of cells double-labeled with antibodies to the insulin receptor and the myc epitope showed the two proteins co-localize at the plasma membrane at the level of light microscopy. Further analyses of the protein sequence of the 53-kDa substrate revealed the presence of a putative SH3 domain and two proline-rich regions, putative binding sites for SH3 and WW domains. Disruption of these three motifs by the introduction of previously characterized point mutations did not affect the membrane localization of the 53-kDa protein, its ability to serve as substrate of the insulin receptor, or its colocalization with the insulin receptor, suggesting these domains are not important in the subcellular targeting of the protein and instead may function in the interaction with subsequent signaling proteins. J. Cell. Biochem. 68:139-150, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 151-163 
    ISSN: 0730-2312
    Keywords: Type I procollagen ; proto-oncogenes ; steroid ; calcitriol ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Changes in the synthesis of type I collagen, the major extracellular matrix component of skin and bone, are associated with normal growth, tissue repair processes, and several pathological conditions. Expression of the COL 1A1 gene is regulated by transcriptional and post-transcriptional mechanisms. However, the hormonal regulation of type I collagen synthesis in human bone has not been well characterized. We have studied the influence of calcitriol, dexamethasone, retinoic acid, and estradiol on the COL 1A1 gene expression by determining the secretion of the C-terminal propeptide (PICP) and the levels of α1(I) procollagen mRNA in cultured human MG-63 and SaOs-2 osteoblast-like osteosarcoma cells. Similar experiments were also performed with respect to expression of the nuclear proto-oncogenes, c-fos and c-jun, in MG-63 cells.In MG-63 cells, calcitriol stimulated the synthesis and secretion of PICP. The α1(I) procollagen mRNA level was elevated with no effect on message stability, indicating a transcriptional mechanism of regulation. In contrast, dexamethasone treatment was accompanied by an accelerated rate of α1(I) procollagen mRNA turnover, observed as decreased amounts of the message and the secreted PICP, implying a posttranscriptional regulation. Retinoic acid, in turn, decreased the levels of α1(I) procollagen mRNA and secreted PICP by slowing down transcription of the COL1A1 gene without any effect on message stability. The ability of these hormones to regulate the α1(I) transcripts was sensitive to puromycin treatment, suggesting an involvement of an induced mediator protein in the action of the hormones on the COL1A1 gene. Both dexamethasone and calcitriol rapidly but transiently increased the expression of the c-fos and c-jun proto-oncogenes. Neither proto-oncogene responded to retinoic acid treatment with significant changes in mRNA levels. Estradiol treatment was found to have no influence on type I procollagen synthesis.In SaOs-2 cells, which are not as well differentiated as the MG-63 cells, calcitriol and dexamethasone did not influence type I procollagen synthesis. Retinoic acid as well as estradiol reduced collagen gene expression in these cells.These findings suggest that hormonal effects on type I procollagen synthesis may depend on the maturational state of the osteoblastic cells that express different regulatory factors and receptors, resulting in, in each case, a finely adjusted rate of gene expression. J. Cell. Biochem. 68:151-163, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: osteoprogenitors ; marrow-stroma ; alkaline phosphatase ; bisphosphonates ; cell proliferation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bisphosphonates (BPs) are inhibitors of bone resorption and soft tissue calcification. The biological effects of the BPs in calcium-related disorders are attributed mainly to their incorporation in bone, enabling direct interaction with osteoclasts and/or osteoblasts through a variety of biochemical pathways. Structural differences account for the considerable differences in the pharmacological activity of BPs. We compared the effects of two structurally different compounds, alendronate and 2-(3′-dimethylaminopyrazinio)ethylidene-1,1-bisphosphonic acid betaine (VS-6), in an osteoprogenitor differentiation system. The BPs were examined in a bone marrow stromal-cell culture system, which normally results in osteoprogenitor differentiation. The drugs were present in the cultures from days 2 to 11 of osteogenic stimulation, a period estimated as being comparable to the end of proliferation and the matrix-maturation stages. We found that the two different BPs have opposing effects on specific alkaline phosphatase (ALP) activity, on stromal-cell proliferation, and on cell-mediated mineralization. These BPs differentially interact with cell-associated phosphohydrolysis, particularly at a concentration of 10-2 of ALP Km, in which alendronate inhibits whereas VS-6 did not inhibit phosphatase activity. VS-6 treatment resulted in similar and significantly increased mineralization at 10 and 1 μM drug concentrations, respectively. In contrast, mineralization was similar to control, and significantly decreased at 10 and 1 μM drug concentrations, respectively, under alendronate treatment. J. Cell. Biochem. 68:186-194, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 200-212 
    ISSN: 0730-2312
    Keywords: polyamines ; chromatin structure ; micrococcal nuclease ; cell cycle ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Several studies suggest that polyamines may stabilize chromatin and play a role in its structural alterations. In line with this idea, we found here by chromatin precipitation and micrococcal nuclease (MNase) digestion analyses, that spermidine and spermine stabilize or condense the nucleosomal organization of chromatin in vitro. We then investigated the possible physiological role of polyamines in the nucleosomal organization of chromatin during the cell cycle in Chinese hamster ovary (CHO) cells deficient in ornithine decarboxylase (ODC) activity. An extended polyamine deprivation (for 4 days) was found to arrest 70% of the odc- cells in S phase. MNase digestion analyses revealed that these cells have a highly loosened and destabilized nucleosomal organization. However, no marked difference in the chromatin structure was detected between the control and polyamine-depleted cells following the synchronization of the cells at the S-phase. We also show in synchronized cells that polyamine deprivation retards the traverse of the cells through the S phase already in the first cell cycle. Depletion of polyamines had no significant effect on the nucleosomal organization of chromatin in G1-early S. The polyamine-deprived cells were also capable of condensing the nucleosomal organization of chromatin in the S/G2 phase of the cell cycle. These data indicate that polyamines do not regulate the chromatin condensation state during the cell cycle, although they might have some stabilizing effect on the chromatin structure. Polyamines may, however, play an important role in the control of S-phase progression. J. Cell Biochem. 68:200-212, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 0730-2312
    Keywords: retinoic acid ; matrix metalloproteinases ; chondrocytes ; mRNA levels ; growth plate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures. When treated for 4 day periods on days 10 and 17, RA increased levels of an ∼70 kDa gelatinase activity. The N-terminal sequence of the first 20 amino acid residues of the purified enzyme was identical to that deduced from chicken MMP-2 cDNA. Time-course studies indicated that RA elevated MMP-2 activity levels in the cultures within 16 h. This increase was inhibited by cycloheximide and was enhanced by forskolin. The increase in MMP-2 activity induced by RA was accompanied by an increase in MMP-2 mRNA levels and was abolished by treatment with cycloheximide. This upregulation of MMP levels by RA in GP chondrocytes is consistent with its effects on osteoblasts and osteosarcoma cells and opposite its inhibitory effects on fibroblasts and endothelial cells. It may well be related to the breakdown of the extracellular matrix in the GP and would be governed by the availability of RA at the calcification front where extensive vascularization also occurs. J. Cell. Biochem. 68:90-99, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 287-297 
    ISSN: 0730-2312
    Keywords: aorta ; mineralization ; calcification ; hydroxyapatite ; inhibitors ; arteriosclerosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mineralization of aorta is known to occur late in life and appears to be a pathological phenomenon. In vitro studies revealed that the matrix prepared from the thoracic aorta pieces after their extraction with 3% Na2HPO4 and 0.1 mM CaCl2 were mineralized under physiological conditions of temperature, pH, and ionic strength of the media to form matrix-bound mineral phase resembling hydroxyapatite in nature. However, the matrix identically prepared from the unextracted rabbits aortae failed to mineralize under identical assay conditions. The addition of the aorta extract in the assay system inhibited the above mineralization process. Standard biochemical techniques, e.g., dialysis, ion exchange, and molecular sieve chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and amino acid analysis by high-performance liquid chromatography were employed to isolate, purify, and characterize the potent inhibitory biomolecules from the aorta extract. The inhibitory activity of the aorta extract was found to be primarily due to the presence of three biomolecules having molecular weights of 66, 45, and 27-29 kDa. The above inhibitory biomolecules loosely associated with aorta may be involved in the control of calcification associated with arteriosclerosis. J. Cell. Biochem. 68:287-297, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 309-327 
    ISSN: 0730-2312
    Keywords: in vitro replication ; ors8 ; Oct-1 transcription factor ; POU domain ; mammalian autonomously replicating DNA sequence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 186-base pair fragment of ors8, a mammalian autonomously replicating DNA sequence isolated by extrusion of nascent monkey DNA in early S phase, has previously been identified as the minimal sequence required for replication function in vitro and in vivo. This 186-base pair fragment contains, among other sequence characteristics, an imperfect consensus binding site for the ubiquitous transcription factor Oct-1. We have investigated the role of Oct-1 protein in the in vitro replication of this mammalian origin. Depletion of the endogenous Oct-1 protein, by inclusion of an oligonucleotide comprising the Oct-1 binding site, inhibited the in vitro replication of p186 to approximately 15-20% of the control, whereas a mutated Oct-1 and a nonspecific oligonucleotide had no effect. Furthermore, immunodepletion of the Oct-1 protein from the HeLa cell extracts by addition of an anti-POU antibody to the in vitro replication reactioninhibited p186 replication to 25% of control levels. This inhibition of replication could be partially reversed to 50-65% of control levels, a two- to threefold increase, upon the addition of exogenous Oct-1 POU domain protein.Site-directed mutagenesis of the octamer binding site in p186 resulted in a mutant clone, p186-MutOct, which abolished Oct-1 binding but was still able to replicate as efficiently as the wild-type p186. The results suggest that Oct-1 protein is an enhancing component in the in vitro replication of p186 but that its effect on replication is not caused through direct binding to the octamer motif. J. Cell. Biochem. 68:309-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 164-173 
    ISSN: 0730-2312
    Keywords: melittin ; flow cytometry ; cytotoxicity ; immunotoxin ; HMy2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the cytolytic effects of the membrane-active peptide, melittin, on a human lymphoblastoid cell line (HMy2) in the context of the use of melittin as the toxic component of an immunotoxin. The toxicity of melittin for HMy2 cells was linear over the concentration range 0.875-3.5 μM. Increased incubation times failed to result in significant cell death at concentrations of melittin below 0.875 μM. Kinetic analysis revealed that the cytolytic activity of melittin was independent of time of exposure beyond 90 min. Flow cytometric analysis of HMy2 cells incubated with FITC-labeled melittin demonstrated that the cells could incorporate up to 2.5 × 105 FITC-melittin molecules per cell with no reduction in viability. Extrapolation of this data indicates that 106 melittin molecules per cell are required for maximum cytotoxicity to HMy2 cells. Further analysis of HMy2 cells that incorporated melittin, but that remained viable, revealed that these cells were able to reduce the number of melittin molecules per cell over time. The data indicate a potential threshold value for the number of melittin molecules that may be required to be delivered to the cell surface in the form of an immunotoxin if effective selective cell death is to be achieved. J. Cell. Biochem. 68:164-173, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 174-185 
    ISSN: 0730-2312
    Keywords: metallothionein ; isoform ; differential expression ; autoregulation ; Chinese hamster ovary cell ; cadmium-resistant cell ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transcription regulation of metallothionein (MT) isoform promoters was investigated in Chinese hamster ovary (CHO) K1 and MT gene amplified, cadmium-resistant (CdR) cells. The transfected promoter of Chinese hamster MTI and MTII genes can be activated in both cell lines by stimulation with Cd or Zn ions, although no MT mRNA can be detected in CHO K1 cells after challenge with metal ions. Neither MT promoter used in this study can be activated by induction with dexamethasone, regardless of whether a sequence homologous to glucocorticoid responsive element is present. During induction by metal ions, differential promoter activities of the MT genes occurs in both CHO K1 and CdR cells where MTII promoter has a stronger activity than that of MTI. As indicated by a time course study in both cell lines, the relative induction ratios of both MTI and MTII promoters are similar at each time interval. This result is consistent with a differential transcriptional factor-promoter interaction for the two MT promoters. By using the CHO K1 and CdR cells as a model system, the occurrence of autoregulation for yeast CUP1 (MT) gene was examined in mammalian cells. Both MT promoters consistently show a lower basal activity but a higher induction ratio in CHO K1 than CdR cells; a result different from that of yeast CUP1 gene. When MTF-1 mRNA was examined, no difference in relative quantity was observed in CHO K1 and in CdR cells treated with metal ions or with metal ions absent. J. Cell. Biochem. 68:174-185, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 195-199 
    ISSN: 0730-2312
    Keywords: 14-3-3 protein ; developmental regulation ; heart development ; Raf-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human heart cDNA sequencing yielded a cDNA clone that is similar in DNA and amino acid sequences to that of mouse 14-3-3 ε isoform. The 6xHis-tagged H1433ε recombinant protein was expressed in Escherichia coli and its size was approximately 30 kDa. From Northern blot results with human multiple tissues, human skeletal muscle was found to have the highest level of h1433ε mRNA expression, whereas Northern blots of human cancer cell lines detected the highest mRNA level of h1433ε in colorectal adenocarcinoma SW480. The protein expression level of h1433ε and Raf-1 is found to be regulated coordinately during rat heart development, and their protein expression was highest from 14.5 to 16.5 days postcoitum. J. Cell. Biochem. 68:195-199, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 0730-2312
    Keywords: transforming growth factor-β ; tumor necrosis factor-α ; phospholipase A2 ; arachidonic acid ; AACOCF3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steroid derivative 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is a regulator of bone biology, and there is evidence that 1,25(OH)2D3 modulates arachidonic acid metabolism in osteoblastic cell model systems and in bone organ cultures. In the present studies, 1,25(OH)2D3 decreased prostaglandin (PG) biosynthesis by normal adult human osteoblast-like (hOB) cell cultures by about 30%. The decrease was observed under basal incubation conditions, or in specimens stimulated by transforming growth factor-β1 (TGF-β) or by tumor necrosis factor-α (TNF). The inhibition of the TGF-β-stimulated PG production appeared to reflect a diminished efficiency of arachidonic acid conversion into PGs by the cells, while the efficiency of substrate utilization for PG biosynthesis was unaffected by 1,25(OH)2D3 pretreatment in the unstimulated samples, or in samples stimulated with TNF or with TNF plus TGF-β. Free arachidonic acid levels were decreased following 1,25(OH)2D3 pretreatment in the TNF stimulated samples. hOB cell phospholipase A2 activity was measured in subcellular fractions, and this activity was decreased by 20-25% in the 1,25(OH)2D3 pretreated samples. The addition of the selective inhibitor AACOCF3 to the phospholipase A2 assays provided evidence that it was the cytoplasmic isoform of the enzyme that was affected by the 1,25(OH)2D3 pretreatment of the hOB cells. Thus, 1,25(OH)2D3 regulation of hOB cell biology includes significant effects on arachidonic acid metabolism. In turn, this could influence the effects of other hormones and cytokines whose actions include the stimulated production of bioactive arachidonic acid metabolites. J. Cell. Biochem. 68:237-246, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 436-445 
    ISSN: 0730-2312
    Keywords: mouse ; PDI family proteins ; retinoic acid ; dibutyryl cAMP ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436-445, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 427-435 
    ISSN: 0730-2312
    Keywords: α2-macroglobulin ; albumin ; placenta ; zinc ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have investigated the binding and internalization of α2-macroglobulin and serum albumin by human placental syncytiotrophoblast cells in vitro. The time course (obtained at 4°C) of α2-macroglobulin binding indicated that an equilibrium was reached after 4 h. The binding of 125I-labelled α2-macroglobulin to syncytiotrophoblast cells was competitively reduced in the presence of excess unlabelled α2-macroglobulin. When the concentration-dependence of binding was examined over a wide concentration range, non-linear regression analysis yielded a Kd of 6.4 nM. In the case of albumin, binding was weak and ligand dissociated from the cell surface during aqueous washing making it impractical to analyze the binding reaction. In other experiments, syncytiotrophoblast cells were incubated with 125I-labelled α2-macroglobulin at 37°C. Under these conditions, trypsin-resistant cell-associated radioactivity increased with time consistent with ligand internalization. 125I-Labelled-ligand was internalized with a t1/2 of about 5 min. After a lag period some radioactivity was released back into the incubation medium. When measured at times up to 210 min, this was found to consist of mostly TCA-precipitable material that had been lost from the cell surface. However, when the incubation was extended to 24 h, almost 15% of the initial cell-associated radioactivity was released to the extracellular medium as TCA-soluble material, consistent with a slow rate of ligand degradation. The specific binding of 65Zn-labelled α2M was similar to that of the 125I-labelled ligand and trypsin-resistance measurements provided evidence of α2M-mediated 65Zn uptake. These results support a role for syncytiotrophoblast in the metabolism of α2-macroglobulin during pregnancy and are also consistent with a role for α2-macroglobulin in the maternal-fetal transport of zinc. J. Cell. Biochem. 68:427-435, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 457-471 
    ISSN: 0730-2312
    Keywords: coated vesicles ; acetylcholine receptors ; AP180 ; myotube ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Monoclonal antibodies were generated to vesicular membranes of clathrin coated vesicles enriched for acetylcholinesterase (AChE). One of these, C172, recognizes vesicles which accumulate in muscle cells around nuclei associated with acetylcholine receptor AChR clusters. Immunoblots of muscle extracts and brain purified clathrin coated vesicles show that C172 recognizes a 100 kd band in muscle, but a 180 kd band in brain. Western blots of purified AP180 protein stained with the two antibodies AP180.1 and C172 displayed the same staining pattern. Tryptic digests probed with peptide antibodies (PS26 and PS27) generated to known sequences of AP180 were used to map the epitope for C172 within the brain AP180 sequence. On immunoblots of digested AP180, all AP180 antibodies and C172 recognized a 100 kd tryptic fragment, however only C172 recognized a smaller 60 kd. Our results suggest that the C172 epitope is located within amino acids 305-598 of the AP180 sequence. Confocal fluorescence microscopy of myoblasts and myotubes stained with the C172 antibody gives a punctate immunofluorescence pattern. Myoblasts stained with C172 revealed a polarized distribution of vesicles distinct from that observed when cells are stained with γ adaptin antibody which is known to localize to trans Golgi network. Myotubes stained with C172 antibody reveal a linear array of vesicular staining. Quantitative analysis of C172 reactive vesicles revealed a significant increase in number of vesicles present around the nuclei associated with the acetylcholine receptor clusters. These vesicles did not colocalize with the Golgi cisternae. These results indicate that a protein with homology to the neuron-specific coated vesicle protein AP180, is present in muscle cells associated with vesicles showing significant concentration around postsynaptic nuclei present in close proximity to AChR clusters. J. Cell. Biochem. 68:457-471, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 0730-2312
    Keywords: taxol ; microtubules ; vimentin ; intermediate filaments ; protein phosphorylation ; protein kinases ; inhibitors ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Taxol, a microtubule stabilizing agent, has been extensively investigated for its antitumor activity. The cytotoxic effect of taxol is generally attributed to its antimicrotubule activity and is believed to be cell cycle dependent. Herein, we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at 10-6 M of taxol treatment for 8 h and diminished at higher (10-5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10-6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxol-treated cells, whereas the microtubules and the actin microfilaments were less affected. Taken together, our data demonstrate that taxol induces hyperphosphorylation of vimentin with concomitant reorganization of the vimentin intermediate filament and that this process may be mediated via a protein kinase C signaling pathway. J. Cell Biochem. 68:472-483, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 0730-2312
    Keywords: transcription factor ; nuclear matrix ; YY1 ; amino acids ; functional regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The multifunctional transcription factor YY1 is associated with the nuclear matrix. In osteoblasts, the interaction of several nuclear matrix-associated transcription factors with the bone specific osteocalcin gene contributes to tissue-specific and steroid hormone-mediated transcription. A canonical nuclear matrix targeting signal (NMTS) is present in all members of the AML/CBFβ transcription factor family, but not in other transcription factors. Therefore, we defined sequences that direct YY1 (414 amino acids) to the nuclear matrix. A series of epitope tagged deletion constructs were expressed in HeLa S3 and in human Saos-2 osteosarcoma cells. Subcellular distribution was determined in whole cells and nuclear matrices in situ by immunofluorescence. We demonstrated that amino acids 257-341 in the C-terminal domain of YY1 are necessary for nuclear matrix association. We also observed that sequences within the N-terminal domain of YY1 permit weak nuclear matrix binding. Our data further suggest that the Gal4 epitope tag contains sequences that affect subcellular localization, but not targeting to the nuclear matrix. The targeted association of YY1 with the nuclear matrix provides an additional level of functional regulation for this transcription factor that can exhibit positive and negative control. J. Cell. Biochem. 68:500-510, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 0730-2312
    Keywords: nuclear matrix ; replication origin ; topoisomerase II-mediated DNA loop excision ; DNA loop anchorage sites ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The recently developed procedure of topoisomerase II-mediated DNA loop excision has been used to analyze the topological organization of a human genome fragment containing the gene encoding lamin B2 and the ppv1 gene. A 3.5 kb long DNA loop anchorage/topoisomerase II cleavage region was found within the area under study. This region includes the end of the lamin B2 coding unit and an intergenic region where an origin of DNA replication was previously found. These observations further corroborate the hypothesis that DNA replication origins are located at or close to DNA loop anchorage regions. J. Cell. Biochem. 69:13-18, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 30-43 
    ISSN: 0730-2312
    Keywords: hyperthermia ; calreticulin ; chaperone complexes ; prompt glycosylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Acute heat stress leads to the glycosylation of a “prompt” stress glycoprotein, P-SG67/64, identified as calreticulin. In the present study, we used immunoprecipitation to investigate the interactions of P-SG/calreticulin with other proteins during cellular recovery from heat stress. In heat-stressed CHO and M21 cells, both glycosylated and unglycosylated P-SGs interact with HSP90, GRP94, GRP78, and the other prompt stress glycoprotein, P-SG50, in an ATP-independent manner. Specificity of HSP-P-SG interactions was determined by chemical cross-linking with the homo-bifunctional agent DSP (3,3′-dithiobis[succinimidyl propionate]). Characterization of the cross-linked complexes involving calreticulin and heat shock proteins (HSPs) showed an average mass of 400-600 kDa by gel filtration chromatography. Overall, the consistent association of glycosylated and unglycosylated calreticulin with P-SG50 and unglycosylated HSPs suggests that P-SG/calreticulin is an active member of the cast of glycone/aglycone chaperones that cooperate to achieve cellular recovery from acute heat stress. J. Cell. Biochem. 69:30-43, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0730-2312
    Keywords: angiotensin II ; G proteins ; Src tyrosine kinases ; c-Fos ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Angiotensin II stimulates a biphasic activation of Raf-1, MEK, and ERK in WB liver epithelial cells. The first peak of activity is rapid and transient and is followed by a sustained phase. Angiotensin II also causes a rapid activation of p21ras in these cells. Moreover, two Src family kinases (Fyn and Yes) were activated by angiotensin II in a time- and concentration-dependent manner. Microinjection of antibodies against Fyn and Yes blocked angiotensin II-induced DNA synthesis and c-Fos expression in WB cells, indicating an obligatory involvement of these tyrosine kinases in the activation of the ERK cascade by angiotensin II. Finally, substantial reduction of the angiotensin II-stimulated activation of Fyn, Raf-1, ERK, and expression of c-Fos by pertussis toxin pretreatment argues that G proteins of the Gi family as well as the Gq family are involved in angiotensin II-mediated mitogenic pathways in WB cells. J. Cell. Biochem. 69:63-71, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 87-93 
    ISSN: 0730-2312
    Keywords: MAP kinase pathways ; JNK ; human osteoblasts ; interleukin-1β ; UMR-106 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We recently demonstrated the activation of extracellular signal- regulated protein kinase 1 and 2 (ERK1 and ERK2) by IGF-1, FGF-2, and PDGF-BB in normal human osteoblastic (HOB) cells as well as in rat and mouse osteoblastic cells. In this report, we have examined whether c-Jun NH2-Terminal Kinase (JNK) pathway is activated by growth factors and interleukin-1β (IL-1β) in normal HOB and rat UMR-106 cells using immune-complex kinase assay and anti-active JNK antibody, which recognizes activated forms of both JNK1 and JNK2. Results have demonstrated the presence of JNK1 and JNK2 proteins in normal HOB and UMR-106 cells. Both JNK1 and JNK2 were activated by IL-1β. IL-1β preferentially activated JNK pathway in a dose- and time-dependent manner and had little effect on ERK pathway. On the other hand, FGF-2 did not activate JNK but most strongly activated ERK pathway. The activation of JNK was maximal at 20 min whereas maximal activation of ERK1 and ERK2 was observed within 10 min. Results have clearly demonstrated that IL-1β preferentially activates JNK pathway whereas FGF-2 activates ERK pathway in normal human and rat UMR-106 osteoblastic cells. J. Cell. Biochem. 69:87-93, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 0730-2312
    Keywords: haemochromatosis gene ; histone gene cluster ; YACs ; cosmid contig ; sequences ; species comparison ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The HFE (HLA-H) gene is a strong candidate gene for hereditary haemochromatosis and was localized on the short arm of chromosome 6 to 6p21.3-p22. In addition, the sequence of the homologous mouse and rat cDNA and a partial sequence from the mouse gene have been reported recently. In this report, we describe the location of the human and the mouse HFE (HLA-H) gene within the histone gene clusters on the human chromosome 6 and the mouse chromosome 13. Both the human and the murine gene were located on syntenic regions within the histone gene clusters in the vicinity of the histone H1t gene. The genomic sequence of the human HFE (HLA-H) gene and the 3′ portion of the homologous mouse gene were determined. Comparison of the genomic sequences from man and mouse and the cDNA sequence from rat shows significant similarities, also beyond the transcribed region of the mouse gene. J. Cell. Biochem. 69:117-126, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 0730-2312
    Keywords: transcription ; mRNA stability ; dexamethasone ; gene regulation ; glucocorticoid receptor ; rat calvarial osteoblasts ; osteopontin ; vitamin D receptor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the contribution of transcriptional mechanisms to the pleiotropic effects of glucocorticoids on basal and vitamin D stimulated expression of the developmentally regulated bone-specific osteocalcin (OC) gene. OC expression was systematically investigated at the level of protein, mRNA, and newly synthesized transcripts during maturation of the bone cell phenotype in cultures of fetal rat calvarial-derived osteoblasts. Our results indicate that transcriptional control of basal and hormone-regulated OC expression predominates in immature osteoblasts prior to matrix mineralization. However, in mature osteoblasts OC expression is controlled primarily by posttranscriptional mechanisms reflected by elevated mRNA levels with a decline in transcription. Vitamin D, alone or in combination with Dex, is a significant factor contributing to mRNA stabilization in mature osteoblasts with a mineralized extracellular matrix. Transcriptional modifications in response to Dex are reflected by quantitative differences between proliferating and mature osteoblasts in the formation of glucocorticoid receptor binding complexes at the proximal OC glucocorticoid response element. Vitamin D and glucocorticoid receptor mRNA levels are significantly higher in mature osteoblasts than in early stage bone cells. However, receptor complexes do not appear to be rate limiting in proliferating osteoblasts when the OC gene is not transcribed. Our results indicate (1) developmental stage-specific effects of steroid hormone on transcriptional regulation of bone expressed genes, and (2) inverse relationships between levels of transcription and cellular representation of mRNA with OC message stabilized in mature osteoblasts. J. Cell. Biochem. 69:154-168, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 0730-2312
    Keywords: genistein ; breast cancer ; p21WAF1/CIP1 ; G2/M arrest ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genistein has been proposed to be responsible for lowering the rate of breast cancer in Asian women but the mechanism for this chemopreventive effect in vivo is unknown. In this study, we present in vitro evidence that genistein inhibits cell proliferation similarly in ER-positive and ER-negative human breast carcinoma cell lines. This inhibition is associated with specific G2/M arrest and induction of p21WAF1/CIP1 expression. Genistein results in a five- to six-fold increase in p21WAF1/CIP1 mRNA levels and a three- to four-fold increase in protein levels, only a 1.5-fold increase in p21WAF1/CIP1 transcription but a three- to six-fold increase in p21WAF1/CIP1 mRNA stability. The increase in p21WAF1/CIP1 is followed by increased apoptosis. The similar effects of genistein on a number of breast carcinoma cell lines with different ER and p53 status suggest that the actions of genistein reported here are mediated through ER and p53 independent mechanisms. The chemopreventive effects of genistein in vivo could be mediated along an identical or similar anti-proliferative pathway. J. Cell. Biochem. 69:44-54, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0730-2312
    Keywords: human oocytes ; immunogold labeling ; splicing factors ; coilin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The distribution of two splicing components (snRNP and SC-35) and coilin were studied by immunogold/electron microscopy in human oocytes from antral follicles at different levels of transcriptional activity (i.e., active, intermediate, and inactive). The results showed a decrease of snRNPs and SC-35 in the karyoplasm as the oocytes progress from a transcriptionally active to the inactive state. The main areas of accumulation of both these splicing components in all stages of oocytes appeared to be the interchromatin granule clusters (IGCs). Within the IGCs, the two splicing components seemed to be spatially segregated, with the snRNPs predominantly bound to the fibrillar region, whereas the SC-35 factors are being enriched in the granular zone. The p80 coilin was found only in the nucleolus-like body (NLB), which is present in all three stages of oocytes; no coiled bodies were evident. These data are consistent with the notion that splicing occurs in the karyoplasm and that the splicing components are mobilized from a storage site (IGCs) to the site of action. J. Cell. Biochem. 69:72-80, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 0730-2312
    Keywords: mechanical strain ; interleukin (IL)-α and β gene expression ; proliferation ; protein synthesis ; morphology ; keratinocyte biology ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent studies in our laboratory have demonstrated that mechanical strain alters many facets of keratinocyte biology including proliferation, protein synthesis, and morphology. IL-1 is known to play an important role in the autocrine regulation of these basic cellular properties under basal and stimulated conditions. However, it is not known whether IL-1 plays a role in strain-induced alteration of keratinocyte biology. Thus, the objective of this study was to test the hypothesis that cyclic strain stimulates IL-1 expression and that strain-induced changes in keratinocyte function is regulated by IL-1. To test this hypothesis, we examined the effect of cyclic strain (10% average deformation) on keratinocyte IL-1 gene expression and the effect of neutralizing antibodies of IL-1α and IL-1β on strain-induced changes in keratinocyte proliferation, morphology, and orientation. Northern blot analyses demonstrated that steady state levels of IL-1α and β mRNA were elevated by 4 h, peaked at 12 h of cyclic strain (IL-1α, 304 ± 14.2%; IL-1β, 212 ± 5.6% increase vs. static controls) and decreased gradually by 24 h. IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.01 μg/ml) significantly blocked strain-induced keratinocyte proliferation as well as the basal rate of proliferation. In contrast, IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.1 μg/ml) had no effect on strain-induced morphological changes such as elongation and alignment. We conclude that mechanical strain induces IL-1 mRNA expression in keratinocytes. The role of IL-1 in mediating strain-induced changes in keratinocyte biology remains to be determined but appears to be independent of morphological changes. J. Cell. Biochem. 69:95-103, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 222-230 
    ISSN: 0730-2312
    Keywords: functional organization of the nucleus ; nucleolus ; speckled compartment ; targeting sequence ; DNA replication ; RNA splicing ; nuclear matrix ; cell cycle ; DNA methyltransferase ; DNA ligase I ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Though there are no separating membranes within the nucleus, different factors are often concentrated at sites where their respective function is required, a phenomenum referred to as functional organization of the nucleus. How is then this organization achieved and how are the different metabolic processes integrated in the nucleus? One emerging principle was revealed by the identification of protein domains that, though not involved in catalysis, regulate enzyme activity at a higher order level by targeting enzymes to the right place at the right time. These targeting sequences constitute an assembly code for nuclear ‘protein factories,’ which ensure the extremely high efficiency and accuracy needed in a complex and competitive environment as the living mammalian cell. J. Cell. Biochem. 70:222- 230, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 231-239 
    ISSN: 0730-2312
    Keywords: nuclear pore complexes ; nuclear localization signals ; nuclear export signals ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231-239, 1998.© 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 240-251 
    ISSN: 0730-2312
    Keywords: actin ; actin-like proteins ; lamin ; nuclear matrix ; perinuclear actin shells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Perinuclear actin shells have been reported in a variety of organisms. The shells have been identified by staining perinuclear material with fluorescently-labelled phalloidin, but have not been localized to a specific subcellular compartment at the ultrastructural level. We show here that the shells of 3T3 cells lie in the peripheral nuclear matrix. Nuclear shells and matrix actin in other parts of the nucleus are not usually detected by immunohistochemical staining because they are inaccessible to antibodies or to phalloidin. Immunohistochemical detection of nuclear actin is only possible during its deposition at the end of mitosis, or in interphase nuclei that have been extracted with detergent, digested with nucleases and washed with high salt buffers. J. Cell. Biochem. 70:240-251, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 281-287 
    ISSN: 0730-2312
    Keywords: retinoblastoma protein ; TATA-binding protein ; repressor ; TSA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The retinoblastoma (RB) tumour suppressor protein negatively regulates cell proliferation by modulating transcription of growth-regulatory genes. Recruitment of Rb to promoters, by association with E2F complex or by fusion with heterologous DNA-binding domains, demonstrated that Rb represses directly transcription. Recent studies also suggest that the RB protein is able to repress gene transcription mediated by the RNA polymerase I and III. Since the TATA-binding protein (TBP) is an important component for transcription mediated by all three RNA polymerases, we have analysed the functional interaction between Rb and TBP in vivo in the context of RNA pol II-driven transcription. We demonstrated that in mammalian cells Rb tethered to promoter represses TBP-mediated activation in vivo, and Rb-mediated repression is reversed in the presence of the inhibition of histone deacetylase activity by trichostatin A (TSA). J. Cell. Biochem. 70:281-287, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 0730-2312
    Keywords: lymphocyte ; monocyte ; cell line ; cell culture ; microgravity ; experiment development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European ‘Biorack’ provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the ‘Biorack’ facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatent in-flight), injection port, and supernatent collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatent, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground- based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities. J. Cell. Biochem. 70:252-267, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 0730-2312
    Keywords: insulin ; insulin receptor ; breast cancer cells ; insulin receptor substrate 1 ; phosphatidylinositol-3-kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In many human breast cancers and cultured cell lines, insulin receptor expression is elevated, and insulin, via its own insulin receptor, can stimulate cell growth. It has recently been demonstrated that the enzyme phosphatidylinositol-3-kinase (PI3-K) mediates various aspects of insulin receptor signaling including cell growth. In order to understand the mechanisms for insulin-stimulated cell growth in human breast cancer, we measured insulin-stimulable PI3-K activity in a non-transformed breast epithelial cell line, MCF-10A, and in two malignantly transformed cell lines, ZR-75-1 and MDA-MB157. All three cell lines express comparable amounts of insulin receptors whose tyrosine autophosphorylation is increased by insulin, and in these cell lines insulin stimulates growth. In MDA-MB157 and MCF-10A cells, insulin stimulated PI3-K activity three- to fourfold. In ZR-75-1 cells, however, insulin did not stimulate PI3-K activity. In ZR-75-1 cells PI3-K protein was present, and its activity was stimulated by epidermal growth factor, suggesting that there might be a defect in insulin receptor signaling upstream of PI3-K and downstream of the insulin receptor. Next, we studied insulin receptor substrate-1 (IRS-1), a major endogenous substrate for the insulin receptor which, when tyrosine is phosphorylated by the insulin receptor, interacts with and activates PI3-K. In ZR-75-1 cells, there were reduced levels of protein for IRS-1. In these cells, both Shc tyrosine phosphorylation and mitogen-activated protein kinase (MAP-K) activity were increased by the insulin receptor (indicating that the p21ras pathway may account for insulin-stimulated cell growth in ZR-75-1 cells).The PI3-K inhibitor LY294002 (50 μM) reduced insulin-stimulated growth in MCF-10A and MDA-MB157 cell lines, whereas it did not modify insulin effect on ZR-75-1 cell growth. The MAP-K/Erk (MEK) inhibitor PD98059 (50 μM) consistently reduced insulin-dependent growth in all three cell lines.Taken together, these data suggest that in breast cancer cells insulin may stimulate cell growth via PI3-K-dependent or-independent pathways. J. Cell. Biochem. 70:268-280, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 0730-2312
    Keywords: assembly of type I collagen ; COOH-terminal propeptide ; pepsin-resistant heterotrimers ; interspecies collagen molecule ; thermal stability ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Procollagen (Type I) contains a noncollagenous COOH-terminal propeptide (C-propeptide) hypothesized to be important in directing chain association and alignment during assembly. We previously expressed human pro-α2(I) cDNA in rat liver epithelial cells, W8, that produce only pro-α1(I) trimer collagen (Lim et al. [1994] MatrixBiol. 14: 21-30). In the resulting cell lines, α2(I) assembled with α1(I) forming heterotrimers. Using this cell system, we investigated the importance of the COOH-terminal propeptide sequence of the pro-α2(I) chain for normal assembly of type I collagen. Full-length human pro-α2(I) cDNA was cloned into expression vectors with a premature stop signal eliminating the final 10 amino acids. No triple-helical molecules containing α2(I) were detected in transfected W8 cells, although pro-α2(I) mRNA was detected. Additional protein analysis demonstrated that these cells synthesize small amounts of truncated pro-α2(I) chains detected by immunoprecipitation with a pro-α2(I) antibody. In addition, since the human-rat collagen was less thermostable than normal intraspecies collagen, wild-type and C-terminal truncated mouse cDNAs were expressed in mouse D2 cells, which produced only type I trimers. Results from both systems were consistent, suggesting that the last 10 amino acid residues of the pro-α2(I) chain are important for formation of stable type I collagen. J. Cell. Biochem. 71:216-232, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 277-283 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Srebrow A, Friedmann Y, Ravanpay A, Daniel CW, Bissell MJ (1998): Expression of Hoxa-1 and Hoxb-7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J Cell Biochem 69:377-391.In Figure 3 on pages 384 and Figure 4 on page 385, two labels were misprinted. The top label on the right side of Figure 3B should have been Hoxb-7 instead of Hoxb-1, and the center label of Figure 4B should have been Hoxb-7 instead of Hoxa-7. The corrected figures are reprinted on the following pages.The Publisher apologizes for the error.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 286-301 
    ISSN: 0730-2312
    Keywords: heart ; development ; MAPK ; MEK ; MEKK ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The loss of ability to proliferate (terminal differentiation) and reduction in capability to resist ischemia are key phenomena observed during postnatal development of the heart. Mitogen-activated protein kinases (MAPKs) mediate signaling pathways for cell proliferation/differentiation and stress responses such as ischemia. In this study, the expression of these kinases and their associated kinases were investigated in rat heart ventricle. Extracts of 1-, 10-, 20-, 50-, and 365-day-old rat heart ventricles were probed with specific antibodies and their immunoreactivities were quantified by densitometry. Most of the mitogenic protein kinases including Raf1, RafB, Mek1, Erk2, and Rsk1 were significantly down-regulated, whereas the stress signaling kinases, such as Mlk3, Mekk1, Sek1, Mkk3, and Mapkapk2 were up-regulated in expression during postnatal development. Most MAP kinases including Erk1, JNKs, p38 Hog, as well as Rsk2, however, did not exhibit postnatal changes in expression. The proto-oncogene-encoded kinases Mos and Cot/Tpl 2 were up-regulated up to two- and four-fold, respectively, during development. Pak1, which may be involved in the regulation of cytoskeleton as well as in stress signaling, was downregulated with age, but the Pak2 isoform increased only after 50 days. All of these proteins, except RafB, were also detected in the isolated adult ventricular myocytes at comparable levels to those found in adult ventricle. Tissue distribution studies revealed that most of the protein kinases that were up-regulated during heart development tended to be preferentially expressed in heart, whereas the downregulated protein kinases were generally expressed in heart at relatively lesser amounts than in most of other tissues. J. Cell. Biochem. 71:286-301, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 284-285 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 264-276 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genes involved in chromosomal translocations, associated with the formation of fusion proteins in leukemia, are modular in nature and regulatory in function. It is likely that they are involved in the initiation and maintenance of normal hematopoiesis. A conceptual model is proposed by which disruption of these different genes leads to the development of acute leukemia. Central to this model is the functional interaction between the mammalian trithorax and polycomb group protein complexes. Many of the genes identified in leukemia-associated translocations are likely upstream regulators, co-participators or downstream targets of these complexes. In the natural state, these proteins interact with each other to form multimeric higher-order structures, which sequentially regulate the development of the normal hematopoietic state, either through HOX gene expression or other less defined pathways. The novel interaction domains acquired by the chimaeric fusion products subvert normal cellular control mechanisms, which result in both a failure of cell maturation and activation of anti-apoptotic pathways. The mechanisms by which these translocation products are able to affect these processes are thought to lie at the level of chromatin-mediated transcriptional activation and/or repression. The stimuli for proliferation and development of clinically overt disease may require subsequent mutations in more than one oncogene or tumor suppressor gene, or both. A more comprehensive catalogue of mutation events in malignant cells is therefore required to understand the key regulatory networks that serve to maintain multipotentiality and in particular the modifications which initiate and coordinate commitment in differentiating hematopoietic cells. We propose a model in which common pathways for leukemogenesis lie along the cell cycle control of chromatin structure in terms of transcriptional activation or repression. A clearer understanding of this cascade will provide opportunities for the design and construction of novel biological agents that are able to restore normal regulatory mechanisms. J. Cell. Biochem. Suppls. 30/31:264-276, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 50-61 
    ISSN: 0730-2312
    Keywords: Sp1 ; p62 ; interaction assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factor Sp1 plays an important role in the expression of many cellular genes. In studies of proteins that associate with Sp1, a 62-kDa glycoprotein was found in immunoprecipitates of Sp1. This protein was detected in these immunoprecipitates by the monoclonal antibody, RL2, which was originally raised against nuclear pore proteins but was subsequently found to recognize an epitope that contains O-linked N-acetylglucosamine (O-GlcNAc). The association of this protein with Sp1 could be blocked by SDS denaturation of the protein complex. Western blot analysis of the Sp1 immunoprecipitate using antibodies to p62 nucleoporin indicated that this nuclear pore protein associates with Sp1. Furthermore, immunoprecipitation of p62 nucleoporin resulted in the coprecipitation of Sp1. Recombinant p62, expressed as a GST-fusion protein using a vaccinia virus system, also interacted with both recombinant and native Sp1. This interaction between p62 and Sp1 required the C-terminus of p62 and the C-terminus was able to bind Sp1, albeit less efficiently than native p62. A mammalian two-hybrid interaction assay was devised in which p62 was fused to the Gal4 DNA-binding domain. This system also indicated that p62, through its C-terminus, interacts with Sp1 in the living cell. We propose that this interaction of a nuclear pore protein with Sp1 may reflect the nuclear organization required to bring transcribable DNA in contact with the transcription factors. J. Cell. Biochem. 68:50-61, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 83-89 
    ISSN: 0730-2312
    Keywords: pH ; osteoblasts ; collagen synthesis ; alkaline phosphatase activity ; glycolysis ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells. J. Cell. Biochem. 68:83-89, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 0730-2312
    Keywords: homeobox ; mammary gland ; morphogenesis ; basement membrane ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Homeobox-containing genes encode transcriptional regulators involved in cell fate and pattern formation during embryogenesis. Recently, it has become clear that their expression in continuously developing adult tissues, as well as in tumorigenesis, may be of equal importance. In the mouse mammary gland, expression patterns of several homeobox genes suggest a role in epithelial-stromal interactions. Because the stroma and the extracellular matrix (ECM) are known to influence both functional and morphological development of the mammary gland, we asked whether these genes would be expressed postnatally in the gland and also in cell lines in culture and whether they could be modulated by ECM. Using a polymerase chain reaction-base strategy five members of the Hox gene clusters a and b were shown to be expressed in cultured mouse mammary cells. Hoxa-1 and Hoxb-7 were chosen for further analysis. Hoxb-7 was chosen because it had not been described previously in the mammary gland and was modulated at different stages of gland development. Hoxa-1 was chosen because it was reported previously to be expressed only in mammary tumors, and not in normal glands. We showed that culturing the mammary epithelial cell lines SCp2 and CID-9 on a basement membrane (BM) that was previously shown to induce a lactational phenotype was necessary to turn off Hoxb-7, but a change in cell shape, brought about by culturing the cells on an inert substratum such as polyHEMA, was sufficient to downregulate Hoxa-1. This is the first report of modulation of homeobox genes by ECM. The results provide a rationale for the differential pattern of expression in vivo of Hoxa-1 and Hoxb-7 during different stages of development. The culture model should permit further in-depth analysis of the molecular mechanisms involved in how ECM signaling and homeobox genes may interact to bring about tissue organization. J. Cell. Biochem. 69:377-391, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 0730-2312
    Keywords: chondrocytes ; cyclooxygenase-2 ; c-Jun N-terminal kinase ; protein kinase A ; cAMP response element ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The involvement of serine/threonine protein phosphatases in signaling pathways that control the expression of the cyclooxygenase-2 (COX-2) gene in human chondrocytes was examined. Okadaic acid (OKA), an inhibitor of protein phosphatases 1 (PP-1) and 2A (PP-2A), induced a delayed, time-dependent increase in the rate of COX-2 gene transcription (runoff assay) resulting in increased steady-state mRNA levels and enzyme synthesis. The latter response was dose dependent over a narrow range of 1-30 nmol/L with declining expression and synthesis of COX-2 at higher concentrations due to cell toxicity. The delayed increase in COX-2 mRNA expression was accompanied by the induction of the proto-oncogenes c-jun, junB, junD, and c-fos (but not FosB or Fra-1). Increased phosphorylation of CREB-1/ATF-1 transcription factors was observed beginning at 4 h and reached a zenith at 8 h. Gel-shift analysis confirmed the up-regulation of AP-1 and CRE nuclear binding proteins, though there was little or no OKA-induced nuclear protein binding to SP-1, AP-2, NF-κB or NF-IL-6 regulatory elements. OKA-induced nuclear protein binding to 32P-CRE oligonucleotides was abrogated by a pharmacological inhibitor of protein kinase A (PKA), KT-5720; the latter compound also inhibited OKA-induced COX-2 enzyme synthesis. Calphostin C (CalC), an inhibitor of PKC isoenzymes, had little effect in this regard. Inhibition of 32P-CRE binding was also observed in the presence of an antibody to CREB-binding protein (265-kDa CBP), an integrator and coactivator of cAMP-responsive genes. The binding to 32P-CRE was unaffected in the presence of excess radioinert AP-1 and COX-2 NF-IL-6 oligonucleotides, although a COX-2 CRE-oligo competed very efficiently. 32P-AP-1 consensus sequence binding was unaffected by incubation of chondrocytes with KT-5720 or CalC, but was dramatically diminished by excess radioinert AP-1 and CRE-COX-2 oligos. Supershift analysis in the presence of antibodies to c-Jun, c-Fos, JunD, and JunB suggested that AP-1 complexes were composed of c-Fos, JunB, and possibly c-Jun. OKA has no effect on total cellular PKC activity but caused a delayed time-dependent increase in total PKA activity and synthesis. OKA suppressed the activity of the MAP kinases, ERK1/2 in a time-dependent fashion, suggesting that the Raf-1/MEKK1/MEK1/ERK1,2 cascade was compromised by OKA treatment. By contrast, OKA caused a dramatic increase in SAPK/JNK expression and activity, indicative of an activation of MEKK1/JNKK/SAPK/JNK pathway. OKA stimulated a dose-dependent activation of CAT activity using transfected promoter-CAT constructs harboring the regulatory elements AP-1 (c-jun promoter) and CRE (CRE-tkCAT). We conclude that in primary phenotypically stable human chondrocytes, COX-2 gene expression may be controlled by critical phosphatases that interact with phosphorylation dependent (e.g., MAP kinases:AP-1, PKA:CREB/ATF) signaling pathways. AP-1 and CREB/ATF families of transcription factors may be important substrates for PP-1/PP-2A in human chondrocytes. J. Cell. Biochem. 69:392-413, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 0730-2312
    Keywords: small heat shock proteins ; TNFα ; phosphorylation mutant ; SB203580 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role of murine Hsp25 phosphorylation in the protection mediated by this protein against TNFα- or H2O2-mediated cytotoxicity was investigated in L929 cell lines expressing wild type (wt-) or nonphosphorylatable (mt-) Hsp25. We show that mt-Hsp25, in which the phosphorylation sites, serines 15 and 86, were replaced by alanines, is still efficient in decreasing intracellular reactive oxygen species levels and in raising glutathione cellular content, leading the protective activity of mt-Hsp25 against oxidative stress to be identical to that of wt-Hsp25. To independently investigate the role of Hsp25 phosphorylation, we blocked TNFα-induced phosphorylation of wt-Hsp25 using SB203580, a specific inhibitor of the P38 MAP kinase. This treatment did not abolish the protective activity of Hsp25 against TNFα. The pattern of Hsp25 oligomerization was also analyzed, showing mt-Hsp25 to constitutively display large native sizes, as does wt-Hsp25 after TNFα treatment in the presence of SB203580. Our results, therefore, are consistent with the possibility that the hyperaggregated form of Hsp25 is responsible for the protective activity against oxidative stress and that the phosphorylation of serines 15 and/or 86 by interfering with this structural reorganization, may lead to the inactivation of Hsp25 protective activity. J. Cell. Biochem. 69:436-452, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 0730-2312
    Keywords: Rous sarcoma virus ; chondrocytes ; matrix calcification ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology. The RSV-transformed chondrocytes actively synthesized extracellular matrix proteins consisting mainly of type I collagen and fibronectin. RSV-transformed cells produced much less type X collagen than was produced by mock-transformed cells. There also was a significant reduction of proteoglycan levels secreted in both the cell-matrix layer and culture media from RSV-transformed chondrocytes. RSV-transformed chondrocytes expressed two- to- threefold more matrix metalloproteinase, while expressing only one-half to one-third of the alkaline phosphatase activity of mock infected cells. Finally, RSV-transformed chondrocytes failed to calcify the extracellular matrix, while mock-transformed cells deposited high levels of calcium and phosphate into their extracellular matrix. These results collectively indicate that RSV transformation disrupts the preprogrammed differentiation pattern of growth plate chondrocytes and inhibit chondrocyte terminal differentiation and mineralization. They also suggest that the expression of extracellular matrix proteins, type II and type X collagens, and the cartilage proteoglycans are important for chondrocyte terminal differentiation and matrix calcification. J. Cell. Biochem. 69:453-462, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 0730-2312
    Keywords: Cordyceps sinensis ; adrenal cells ; steroidogenesis ; signal pathway ; PKC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cordyceps sinensiscontains a factor that stimulates corticosteroid production in the animal model. However, it is not known whether this drug acts directly on the adrenal glands or indirectly via the hypothalamus-pituitary axis. In the present study, we used primary rat adrenal cell cultures to investigate the pharmacological function of a water-soluble extract of Cordyceps sinensis(CS) and thesignaling pathway involved. Radioimmunoassay of corticosterone indicated that the amount of corticosterone produced by adrenal cells is increased in a positively dose-dependent manner by CS, reaching a maximun at 25 μg/ml. This stimulating effect was seen 1 h after CS treatment and was maintained for up to 24 h. Concomitantly, the lipid droplets in these cells became small and fewer in number. Immunostaining with a monoclonal antibody, A2, a specific marker for the lipid droplet capsule, demonstrated that detachment of the capsule from the lipid droplet occurs in response to CS application and that the period required for decapsulation is inversely related to the concentration of CS applied. The mechanism of CS-induced steroidogenesis is apparently different from that for ACTH, since intracellular cAMP levels were not increased in CS-treated cells. However, combined application with calphostin C, a PKC inhibitor, completely blocked the effect of CS on steroidogenesis, suggesting that activation of PKC may be responsible for the CS-induced steroidogenesis. J. Cell. Biochem. 69:483-489, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 506-521 
    ISSN: 0730-2312
    Keywords: heart ; development ; CaMPK ; cAPK ; CDK ; cGPK ; Kkialre ; PKC ; Wee1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During early postnatal development, cardiomyocytes, which comprise about 80% of ventricular mass and volume, become phenotypically developed to facilitate their contractile functions and terminally differentiated to grow only in size but not in cell number. These changes are due to the expression of contractile proteins as well as the regulation of intracellular signal transduction proteins. In this study, the expression patterns of several protein kinases involved in various cardiac functions and cell-cycle control were analyzed by Western blotting of ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats. The expression level of cAMP-dependent protein kinase was slightly decreased (20%) over the first year, whereas no change was detected in cGMP-dependent protein kinase I. Calmodulin-dependent protein kinase II, which is involved in Ca2+ uptake into the sarcoplasmic reticulum, was increased as much as ten-fold. To the contrary, the expressions of protein kinase C-α and ι declined 77% with age. Cyclin-dependent protein kinases (CDKs) such as CDK1, CDK2, CDK4, and CDK5, which are required for cell-cycle progression, abruptly declined to almost undetectable levels after 10-20 days of age. In contrast, other CDK-related kinases, such as CDK8 or Kkialre, did not change significantly or increased up to 50% with age, respectively. Protein kinases implicated in CDK regulation such as CDK7 and Wee1 were either slightly increased in expression or did not change significantly. All of the proteins that were detected in ventricular extracts were also identified in isolated cardiac myocytes in equivalent amounts and analyzed for their relative expression in ten other adult rat tissues. J. Cell. Biochem. 69:506-521, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 70-83 
    ISSN: 0730-2312
    Keywords: TGF-β1 ; apoptosis ; growth inhibition ; retina ; endothelial cells ; pericytes ; angiogenesis ; p21waf1/cip1 ; p53 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β1 (TGF-β1) regulates a variety of cellular functions. In several types of cells, for example, it acts as a growth inhibitor and an inducer of apoptotic cell death. Although one of the important modulators in retinal vascular development and retinal neovascularization, the effects of TGF-β1 on retinal microvascular cells are not fully defined. We have found that proliferation of both bovine retinal endothelial cells (EC) and pericytes was inhibited by TGF-β1 in a concentration-dependent manner. However, only retinal EC lost viability after exposure to increasing concentrations of TGF-β1 (up to 10 μg/ml) in the presence of 2% fetal bovine serum. Dying EC exhibited the morphological and biochemical characteristics of apoptosis. Fragmented nuclei and chromatin condensation were apparent after staining with the fluorochrome Hoechst 33258 and the reagent ApopTag; moreover, gel electrophoresis of DNA from TGF-β1-treated EC demonstrated degradation of chromatin into the discrete fragments typically associated with apoptosis. The addition of anti-TGF-β1 neutralizing antibody abolished the apoptotic cell death induced by TGF-β1. Because not all the EC in a given culture died after exposure to TGF-β1, we separated the apoptosis-sensitive cells from those resistant to TGF-β1-mediated apoptosis and determined the expression of several proteins associated with this apoptotic pathway. Apoptosis of EC mediated by TGF-β1 was associated with a decreased level of the cyclin-dependent kinase inhibitor p21waf1/cip1, compared with that observed in the apoptosis-resistant cells. In contrast, the translation product of the tumor-suppressor gene p53 was increased in the TGF-β1-treated apoptotic cells. Thus, we propose that p21waf1/cip1 and p53 function in distinct pathways that are protective or permissive, respectively, for the apoptotic signals mediated by TGF-β1. J. Cell. Biochem. 70:70-83, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 0730-2312
    Keywords: steroid hormone receptor ; 1,25-dihydroxyvitamin D3 ; nuclear retention ; DNA-binding ; transcriptional activation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The human vitamin D receptor (hVDR) possesses a unique array of five basic amino acids positioned between the two DNA-binding zinc fingers that is similar to well-characterized nuclear localization sequences in other proteins. When residues within this region are mutated to nonbasic amino acids, or when this domain is deleted, the receptor is still well expressed, but it no longer associates with the vitamin D-responsive element in DNA, in vitro, and hVDR-mediated transcriptional activation is abolished in transfected cells. Concomitantly, the mutated hVDRs exhibit a significant shift in hVDR cellular distribution favoring cytoplasmic over nuclear retention as assessed by subcellular fractionation and immunoblotting. Independent immunocytochemical studies employing a VDR-specific monoclonal antibody demonstrate that mutation or deletion of this basic domain dramatically attenuates hVDR nuclear localization in transfected COS-7 cells. Although wild-type hVDR is partitioned predominantly to the nucleus in the absence of the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone, treatment with ligand further enhances nuclear translocation, as it does to some degree in receptors with the basic region altered. The role of 1,25(OH)2D3may be to facilitate hVDR heterodimerization with retinoid X receptors, stimulating subsequent DNA binding and ultimately enhancing nuclear retention. Taken together, these data reveal that the region of hVDR between Arg-49 and Lys-55 contains a novel constitutive nuclear localization signal, RRSMKRK. J. Cell. Biochem. 70:94-109, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 0730-2312
    Keywords: giant cell tumor of bone ; MCP-1 ; TGF-β ; CD68+ ; chemotaxis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Giant cell tumor of bone (GCT) is one of a few neoplasms in which the macrophage/osteoclast precursor cells and osteoclast-like giant cells infiltrate the tumor mass. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemotactic factor specific for monocytes. In search of relevant cytokines that may enhance the recruitment of these reactive cells, we evaluated the localization and regulation of MCP-1 mRNA and protein in GCT by using Northern blot analysis, in situ hybridization and immunohistochemistry. We also determined whether conditioned medium obtained from GCT cultures can recruit human peripheral blood monocytes (CD68+) in an in vitro chemotactic assay. Using Northern blot analysis, we detected the specific gene transcript for MCP-1 in all GCT samples tested. In situ hybridization and immunohistochemistry revealed that both MCP-1 gene transcript and protein were consistently present in the cytoplasm of stromal-like tumor cells of GCT. Treatment of mononuclear cells from GCT at third passage with TGF-β1 for 24 h increased the level of MCP-1 mRNA in a dose-dependent manner, with the maximum effect at 1 ng/ml. Conditioned media from GCT cultures promoted the chemotactic migration of CD68+ peripheral monocytes, an activity which was abolished by the addition of MCP-1 antibody to the conditioned medium. Thus, the results of this study suggest that recruitment of CD68+ macrophage-like cells may be due to the production MCP-1 by stromal-like tumor cells. These CD68+ cells may originate from peripheral blood and could have the capability of further differentiating into osteoclasts in the tumor. J. Cell. Biochem. 70:121-129, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 181-188 
    ISSN: 0730-2312
    Keywords: magnetic fields ; HSP70 gene expression ; human HSP70 promoter ; c-myc protein binding sites ; cellular stress ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated c-myc protein-binding sites on the HSP70 promoter as modulators of the induction of HSP70 gene expression in response to magnetic field stimulation (8μT at 60Hz) and whether the presence of c-myc protein potentiates transactivation of HSP70 expression. A 320 base pair region in the HSP70 promoter (+1 to -320) was analyzed. This region contains two c-myc-protein binding sites with consensus sequences located at -230 and -160 nucleotide positions (relative to the transcription initiation site) and overlapping with the region reported for the regulation of HSP70 gene expression by c-myc protein. This promoter region is upstream of other regulatory sequences, including the heat shock element (HSE), AP-2, and serum response element (SRE). Transfectants containing both c-myc protein-binding sites, HSP-MYC A and HSP-MYC B, and exposed to magnetic fields showed a 3.0-fold increase in expression of CAT activity as compared with sham-exposed control transfectants. Transfectants containing one c-myc binding site, HSP-MYC A, and exposed to magnetic fields showed a 2.3-fold increase in CAT expression. Transfectants in which both HSP-MYC A and HSP-MYC B binding sites were deleted showed no magnetic field sensitivity; values were virtually identical with sham-exposed controls. If the c-myc expression vector was not co-transfected with the constructs containing myc-binding sites, there was no difference in the expression of CAT activity between magnetically stimulated and sham-exposed controls, although both responded to heat shock. These data suggest that endogenous elevated levels of myc protein contribute to the induction of HSP70 in response to magnetic field stimulation. J. Cell. Biochem. 69:181-188, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 211-220 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; protein kinase CK2 ; disulfide bonds ; sodium tetrathionate ; iodoacetamide ; sulfhydryl crosslinking ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix (NM) appears to be an intranuclear locale for significant and dynamic association of the ubiquitous multifunctional messenger-independent serine/threonine protein kinase CK2 that has been implicated in growth control [Tawfic et al. (1996): J Cell Biochem 61:165-171]. We have examined the nature of the association of CK2 with the NM. Nuclei prepared in the presence of a sulfhydryl-blocking reagent such as iodoacetamide demonstrate a reduction in the amount of CK2 associated with the NM to less than 5% of the control. On the other hand, when nuclei are treated with the sulfhydryl crosslinking reagent sodium tetrathionate, NM-associated CK2 increases severalfold. Treatment of nuclei with sodium tetrathionate followed by 2-mercaptoethanol blocks this increase. Nuclei isolated from rat liver and prostate behaved similarly, suggesting an identical mode of association of CK2 with the NM regardless of the organ. These results indicate a role of sulfhydryl interactions such that NM anchoring of CK2 occurs via its β subunit, which contains several vicinal cysteine residues. Further, various sulfhydryl-blocking reagents inhibited CK2 activity in a concentration-dependent manner, and the inhibitory effect was reversed by agents such as dithiothreitol, implying that cysteine residues in the CK2 play a role in its catalytic activity. J. Cell. Biochem. 69:211-220, 1998. Published 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 201-210 
    ISSN: 0730-2312
    Keywords: sodium butyrate ; alkaline phosphatase ; A5 cells ; A5-DAP cells ; A5-BAG cells ; β-galactosidase ; retroviral vectors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have studied the effects of sodium butyrate (NaBu) on the expression of genes transduced by retroviral vectors and stably expressed in two salivary gland-derived cell lines, A5-DAP and A5-BAG, established earlier. These cell lines were obtained by infecting A5 cells with the retroviral vectors DAP and BAG, respectively, and by selecting neomycin-resistant transduced cells. A5-DAP cells express human placental alkaline phosphatase (PLAP) and A5-BAG cells bacterial β-galactosidase, both under the control of the viral long terminal repeat (LTR) enhancer-promoter. NaBu in the concentration of 2-8 mM inhibited the growth of A5-DAP cells, and induced the expression of heat-stable PLAP. These effects of NaBu were dose-dependent. Induction of PLAP in clones of A5-DAP cells that express different basal levels of the enzyme was not correlated with the relative inducibilty by NaBu. Exposure to 4 mM NaBu for 48 h increased the PLAP mRNA level by 31%. A5-DAP cells released, in a time-dependent manner, PLAP into the culture medium. Cells treated with NaBu released more PLAP than untreated cells in proportion to their elevated level of the enzyme. The parent A5 cells also express a low level of tissue non-specific type alkaline phosphatase, which was also induced by NaBu. NaBu inhibited the growth of A5-BAG cells also, and increased the β-galactosidase level. These data indicate the genes transduced by retroviral vectors can be induced by NaBu, which most likely interacts with the viral LTR. J. Cell. Biochem. 69:201-210, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 221-231 
    ISSN: 0730-2312
    Keywords: sodium fluoride ; stress response ; stress proteins ; heat shock proteins ; rat brain tumor 9L cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We herein demonstrate that sodium fluoride (NaF) acts as a stress response inducer on HeLa and 9L rat brain tumor cells. NaF is only slightly cytotoxic, and inhibitory to Ser/Thr-phosphatases but not to Tyr-phosphatases in both cell lines. After treatment with 5 mM NaF for 2 h, the phosphorylation levels of vimentin and an alkali-resistant 65-kDa phosphoprotein were enhanced, a common phenomenon detected in cells under a variety of stress conditions. Under an identical treatment protocol, in which the cells were treated with 5 mM NaF for 2 h and then allowed to recover under normal growing conditions for up to 12 h, NaF differentially induced the cytoplasmic/nuclear heat-shock protein70s (including both the inducible and the constitutively expressed members of this protein family) in HeLa cells and the endoplasmic reticulum residing heat-shock protein70 (the glucose-regulated protein with an apparent molecular weight of 78 kDa) in 9L cells. Electrophoretic mobility shift assays (EMSA) using probes containing well-characterized regulatory elements revealed the activation of the heat-shock factor in HeLa but not in 9L cells; this is in good agreement with the stress protein induction pattern. Additional differential induction of binding activities toward EMSA probes individually containing NF-κB, AP-2, and CRE-like elements were detected in NaF-treated cells. The possible involvement of these binding sites as well as the corresponding factors in the stress response are discussed. J. Cell. Biochem. 69:221-231, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 0730-2312
    Keywords: monomeric laminin receptor ; receptor maturation ; acylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Even though the involvement of the 67-kDa laminin receptor (67LR) in tumor invasiveness has been clearly demonstrated, its molecular structure remains an open problem, since only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated so far. A pool of recently obtained monoclonal antibodies directed against the recombinant 37LRP molecule was used to investigate the processing that leads to the formation of the 67-kDa molecule. In soluble extracts of A431 human carcinoma cells, these reagents recognize the precursor molecule as well as the mature 67LR and a 120-kDa molecule. The recovery of these proteins was found to be strikingly dependent upon the cell solubilization conditions: the 67LR is soluble in NP-40-lysis buffer whereas the 37LRP is NP-40-insoluble. Inhibition of 67LR formation by cerulenin indicates that acylation is involved in the processing of the receptor. It is likely a palmitoylation process, as indicated by sensitivity of NP-40-soluble extracts to hydroxylamine treatment. Immunoblotting assays performed with a polyclonal serum directed against galectin3 showed that both the 67- and the 120-kDa proteins carry galectin3 epitopes whereas the 37LRP does not. These data suggest that the 67LR is a heterodimer stabilized by strong intramolecular hydrophobic interactions, carried by fatty acids bound to the 37LRP and to a galectin3 cross-reacting molecule. J. Cell. Biochem. 69:244-251, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 260-270 
    ISSN: 0730-2312
    Keywords: oncogenic function of mutant p53 ; MAR-DNA elements ; MAR-DNA binding by mutant p53 ; MethA p53 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We recently reported that murine MethA mutant but not wild-type p53 specifically binds to MAR-DNA elements (MARs) with high affinity. Here we show that this DNA binding activity is exerted not only by MethA mutant p53 but also by other murine mutant p53 proteins isolated from the transformed murine BALB/c cell lines 3T3tx and T3T3 and differing in their conformational status. High affinity MAR-DNA binding was not restricted to the XbaI-IgE-MAR-DNA fragment from the murine immunoglobulin heavy chain gene enhancer locus [Cockerill et al. (1987): J Biol Chem 262:5394-5397] used in previous studies, as MethA p53 also specifically interacted with other A/T-rich bona fide MARs. Not only murine but also human mutant p53 proteins carrying the mutational hot spot amino acid exchanges 175Arg→His, 273Arg→Pro, or 273Arg→His bound to the XbaI-IgE-MAR-DNA fragment. We therefore conclude that high affinity MAR-DNA binding is a property common to a variety of mutant p53 proteins. J. Cell. Biochem. 69:260-270, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 291-303 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; TGF-β1 ; bone ; osteoblast differentiation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β-treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 0730-2312
    Keywords: VAT-1 ; Pacific electric ray Torpedo californica ; ATPase ; Mus musculus ; gene structure ; Ehrlich ascites tumor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recently, interest has focused on the human gene encoding the putative protein homologous to VAT-1, the major protein of the synaptic vesicles of the electric organ of the Pacific electric ray Torpedo californica, after it has been localized on chromosome locus 17q21 in a region encompassing the breast cancer gene BRCA1. Chromosomal instability in this region is implicated in inherited predisposition for breast and ovarian cancer. Here we describe isolation and biochemical characterization of a mammalian 48 kDa protein homologous to the VAT-1 protein of Torpedo californica. This VAT-1 homolog was isolated from a murine breast cancer cell line (Ehrlich ascites tumor) and identified by sequencing of cleavage peptides. The isolated VAT-1 homolog protein displays an ATPase activity and exists in two isoforms with isoelectric points of 5.7 and 5.8. cDNA was prepared from Ehrlich ascites tumor cells, and the murine VAT-1 homolog sequence was amplified by polymerase chain reaction and partially sequenced. The known part of the murine and the human translated sequences share 97% identity. By Northern blots, the size of the VAT-1 homolog mRNA in both murine and human (T47D) breast cancer cells was determined to be 2.8 kb. Based on the presented data, a modified gene structure of the human VAT-1 homolog with an extended exon 1 is proposed. VAT-1 and the mammalian VAT-1 homolog form a subgroup within the protein superfamily of medium-chain dehydrogenases/reductases. J. Cell. Biochem. 69:304-315, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 0730-2312
    Keywords: architectural transcription factor ; nuclear matrix ; osteoblast ; parathyroid hormone ; type I collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In connective tissue, cell structure contributes to type I collagen expression. Differences in osteoblast microarchitecture may account for the two distinct cis elements regulating basal expression, in vivo and in vitro, of the rat type I collagen α1(I) polypeptide chain (COL1A1). The COL1A1 promoter conformation may be the penultimate culmination of osteoblast structure. Architectural transcription factors bind to the minor groove of AT-rich DNA and bend it, altering interactions between other trans-acting proteins. Similarly, nuclear matrix (NM) proteins bind to the minor groove of AT-rich matrix-attachment regions, regulating transcription by altering DNA structure. We propose that osteoblast NM architectural transcription factors link cell structure to promoter geometry and COL1A1 transcription. Our objective was to identify potential osteoblast NM architectural transcription factors near the in vitro and in vivo regulatory regions of the rat COL1A1 promoter. Nuclear protein-promoter interactions were analyzed by gel shift analysis and related techniques. NM extracts were derived from rat osteosarcoma cells and from rat bone. The NM protein, NMP4, and a soluble nuclear protein, NP, both bound to two homologous poly(dT) elements within the COL1A1 in vitro regulatory region and proximal to the in vivo regulatory element. These proteins bound within the minor groove and bent the DNA. Parathyroid hormone increased NP/NMP4 binding to both poly(dT) elements and decreased COL1A1 mRNA in the osteosarcoma cells. NP/NMP4-COL1A1 promoter interactions may represent a molecular pathway by which osteoblast structure is coupled to COL1A1 expression. J. Cell. Biochem. 69:336-352. © 1998 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 250-263 
    ISSN: 0730-2312
    Keywords: signal transduction ; cell adhesion complexes ; membrane skeleton ; nucleo-cytoplasmic translocation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments. J. Cell. Biochem. Suppls. 30/31:250-263, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 297-303 
    ISSN: 0730-2312
    Keywords: tissue engineering ; biomaterials ; cell culture ; polymers ; transplants ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This article reviews the important developments in the field of tissue engineering over the last 10 years. Research in the area of biomaterials is examined from the perspective of providing the foundation for the development of tissue engineering. Early efforts combining cells with biocompatible materials are described and applications of this technology presented, with particular focus on uses in orthopaedics and maxillofacial surgery. The basic principles of tissue engineering and state-of-the-art technology in cell biology and materials science as used currently in the field are presented. Finally, futures challenges are outlined from the perspective of integrating technologies from medicine, biology, and engineering, in hopes of translating tissue engineering to clinical applications. J. Cell. Biochem. Suppls. 30/31:297-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 304-311 
    ISSN: 0730-2312
    Keywords: DNA vaccines ; gene therapy ; vectors ; immune response ; antigen presentation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Inoculations with antigen-expressing plasmid DNAs (DNA vaccines) in the production of protective immune responses. Since the initial development of DNA vaccines more than 5 years ago, major strides have been made in the design of efficient vaccine vectors and in the process of vaccine delivery. However, many questions remain regarding the mechanism of cellular transfection and in the development of immune responses. This review addresses functional aspects of DNA vaccines, including vector design and delivery, as well as cellular transfection and antigen presentation. J. Cell. Biochem. Suppls. 30/31:304-311, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 0730-2312
    Keywords: vitamin D analogues ; vitamin D receptor ; ligand binding ; limited protease digestion ; ligand-dependent gel shift assay ; gene regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear hormone 1α,25-dihydroxyvitamin D3 (VD) has important cell-regulatory functions but also a strong calcemic effect. Therefore, various VD analogues have been synthesized and screened for their biological profile. In order to gain more insight into the molecular basis of the high antiproliferative but low calcemic action of the VD analogue EB1089, we characterized this compound in comparison to five structurally related VD analogues. The activities of the six VD analogues in in vitro assays (limited protease digestion assays for determining interaction with monomeric vitamin D receptor (VDR), ligand-dependent gel shift assays for showing the increase of DNA binding of VDR-retinoid X receptor (RXR) heterodimers, and reporter gene assays on different types of VD response elements for demonstrating the efficacy in nuclear VD signalling) were found to represent their biological potency (antiproliferative effect on different malignant cell lines). In this series, EB1089 proved to be the most potent VD analogue; that is, every structural modification (20-epi configuration, cis-configuration at position C24, or changes at the ethyl groups at position C25) appeared to reduce the determined activities mediated through the VDR of these analogues. Moreover, the modifications of EB1089 resulted in a loss of VD response element selectivity, suggesting that this parameter is very critical for the biological profile of this VD analogue. J. Cell. Biochem. 71:340-350, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 363-374 
    ISSN: 0730-2312
    Keywords: nuclear matrix proteins ; preparation method ; two-dimensional polyacrylamide gel electrophoresis ; heterogeneous nuclear ribonucleoproteins ; vanadyl ribonucleoside complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Comparative analysis of nuclear matrix proteins by two-dimensional electrophoresis may be greatly impaired by copurifying cytoskeletal proteins. The present data show that the bulk of adhering cytofilaments may mechanically be removed by shearing of nuclei pretreated with vanadyl ribonucleoside complexes. Potential mechanisms of action not based on ribonuclease inhibition are discussed. To individually preserve the integrity of nuclear structures, we developed protocols for the preparation of nuclear matrices from three categories of cells, namely leukocytes, cultured cells, and tissue cells. As exemplified with material from human lymphocytes, cultured amniotic cells, and liver tissue cells, the resulting patterns of nuclear matrix proteins appeared quite similar. Approximately 300 spots were shared among the cell types. Forty-nine of these were identified, 21 comprising heterogeneous nuclear ribonucleoproteins. Heterogeneous nuclear ribonucleoproteins L and nuclear lamin B2 isoforms were identified by amino acid sequencing and mass spectrometry. However, individually expressed proteins, such as the proliferating cell nuclear antigen, also pertained following application of the protocols. Thus, enhanced resolution and comparability of proteins improve systematic analyses of nuclear matrix proteins from various cellular sources. J. Cell. Biochem. 71:363-374, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 1-7 
    ISSN: 0730-2312
    Keywords: cell stress ; heat shock ; σ32 ; magnetic fields ; ribonuclease protection assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mechanism of interaction between weak electromagnetic fields and cells is not understood. As a result, the health effect(s) induced by exposure to these fields remains unclear. In addition to questions relating to the site of initial magnetic field (MF) interactions, the nature of the cell's response to these perturbations is also unclear. We examined the hypothesis that the cells respond to MFs in a manner similar to other environmental stressors such as heat. Using the bacterium Escherichia coli, we examined the mRNA levels of σ32, a protein that interacts with RNA polymerase to help it recognize a variety of stress promoters in the cell. Our data show that the intracellular level of σ32 mRNA is enhanced following a 15-min exposure to a 60 Hz, 1.1 mT magnetic field. J. Cell. Biochem. 68:1-7, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0730-2312
    Keywords: gap junctions ; dye-coupling ; connexin43 ; parathyroid hormone ; prostaglandin E2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Connexin43 (Cx43) forms gap junctions that mediate intercellular communication between osteoblasts. We have examined the effects of prostaglandin E2 (PGE2) and parathyroid hormone (PTH) on gap junctional communication in the rat osteogenic sarcoma cells UMR 106-01. Incubation with either PGE2 or PTH rapidly (within 30 min) increased transfer of negatively charged dyes between UMR 106-01 cells. This stimulatory effect lasted for at least 4 h. Both PGE2 and PTH increased steady-state levels of Cx43 mRNA, but only after 2-4 h of incubation. Transfection with a Cx43 gene construct linked to luciferase showed that this effect of PTH was the result of transcriptional upregulation of Cx43 promoter. Stimulation of dye coupling and Cx43 gene transcription were reproduced by forskolin and 8Br-cAMP. Exposure to PGE2 for 30 min increased Cx43 abundance at appositional membranes in UMR 106-01, whereas total Cx43 protein levels increased only after 4-6 h of incubation with either PGE2 or PTH. Inhibition of protein synthesis by cycloheximide did not affect this early stimulation of dye coupling, but it significantly inhibited the sustained effect of PTH and forskolin on cell coupling. In summary, both PTH and PGE2, presumably through cAMP production, enhance gap junctional communication in osteoblastic cell cultures via two mechanisms: initial rapid redistribution of Cx43 to the cell membrane, and later stimulation of Cx43 gene expression. Modulation of intercellular communication represents a novel mechanism by which osteotropic factors regulate the activity of bone forming cells. J. Cell. Biochem. 68:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 281-285 
    ISSN: 0730-2312
    Keywords: QM ; large P-antigen ; 60S ribosomal subunit ; colocalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: QM is a human cDNA originally isolated as a transcript elevated in a nontumorigenic Wilms' tumor microcell hybrid, relative to the tumorigenic parental cell line. The QM gene encodes a 24 kDa basic protein that peripherally associates with the ribosomes. Recently, the gene for this protein has also been shown in Saccharomyces cerevisiaeto encode an essential 60S ribosomal subunit protein that is required for the joining of the 40S and 60S subunits. Since the association of QM with ribosomes can be disrupted with 1M NaCl, which has no effect on the association of core ribosomal proteins, indirect immunofluorescent cell staining was performed to colocalize the QM protein with the human large P-antigen, a core ribosomal protein of the 60S subunit, and to determine whether the assembly of the QM protein onto the 60S ribosomal subunit occurs in the nucleolus or in the cytoplasm. Our results reveal that QM co-localizes with the large P-antigen only to the cytoplasm where the rough endoplasmic reticulum is found and not to the nucleolus where ribosome assembly occurs. This finding suggests that the QM protein is most likely involved in a late step of the 60S subunit assembly and is added to the 60S ribosomal subunit in the cytoplasm and not in the nucleolus. J. Cell. Biochem. 68:281-285, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 110-120 
    ISSN: 0730-2312
    Keywords: cadmium ; zinc ; cell culture ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of ≥0.1 μM and Zn concentrations of ≥100 μM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype. J. Cell. Biochem. 68:110-120, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 128-137 
    ISSN: 0730-2312
    Keywords: oligodendrocytes ; cell cycle ; differentiation ; cyclin-dependent kinases ; cdk5 ; cdk2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Oligodendrocytes, the myelinating cells of the central nervous system, are terminally differentiated cells that originate through asynchronous waves of proliferation and differentiation of precursors present at birth. Withdrawal from cell cycle and onset of differentiation are tightly linked and depend on an intrinsic program modulated by the action of growth factors. p27 plays a central and obligatory role in the initiation of oligodendrocyte differentiation and cessation of proliferation. In this paper, we have characterized the role of modulation of cdk2 and cdk5 kinase activity during the process of oligodendrocyte precursor differentiation. As rat primary oligodendrocytes differentiate in culture there is a fall in cdk2 activity and a rise in cdk5 activity as well as an increase in the cdk inhibitor, p27 protein. The decline in cdk2 activity is not accompanied by a drop in cdk2 protein level, suggesting that it results from inhibition of cdk2 activation rather than decreased protein expression. Taken together, these data suggest that oligodendrocytes may withdraw from the cell cycle at G1-S transition through inactivation of cdk2 activity, possibly initiated by increasing amount of p27, and that cdk5 may have a role until now unrecognized in the differentiation of oligodendrocytes. J. Cell. Biochem. 68:128-137, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 0730-2312
    Keywords: cell proliferation ; tumor progression ; EGF receptor ; ErbB ; HER1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 0730-2312
    Keywords: mechanical loading ; gene expression ; osteopontin ; myeloperoxidase ; rats ; differential display ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The skeleton has the ability to alter its mass, geometry, and strength in response to mechanical stress. In order to elucidate the molecular mechanisms underlying this phenomenon, differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to analyze gene expression in endocortical bone of mature female rats. Female Sprague-Dawley rats, approximately 8 months old, received either a sham or bending load using a four-point loading apparatus on the right tibia. RNA was collected at 1 h and 24 h after load was applied, reverse-transcribed into cDNA, and used in DDRT-PCR. Parallel display of samples from sham and loaded bones on a sequencing gel showed several regulated bands. Further analysis of seven of these bands allowed us to isolate two genes that are regulated in response to a loading stimulus. Nucleotide analysis showed that one of the differentially expressed bands shares 99% sequence identity with rat osteopontin (OPN), a noncollagenous bone matrix protein. Northern blot analysis confirms that OPN mRNA expression is increased by nearly 4-fold, at 6 h and 24 h after loading. The second band shares 90% homology with mouse myeloperoxidase (MPO), a bactericidal enzyme found primarily in neutrophils and monocytes. Semiquantitative PCR confirms that MPO expression is decreased 4- to 10-fold, at 1 h and 24 h after loading. Tissue distribution analysis confirmed MPO expression in bone but not in other tissues examined. In vitro analysis showed that MPO expression was not detectable in total RNA from UMR 106 osteoblastic cells or in confluent primary cultures of osteoblasts derived from either rat primary spongiosa or diaphyseal marrow. Database analysis suggests that MPO is expressed by osteocytes. These findings reinforce the association of OPN expression to bone turnover and describes for the first time, decreased expression of MPO during load-induced bone formation. These results suggest a role for both OPN and MPO expression in bone cell function. J. Cell. Biochem. 68:355-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 403-410 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; gene therapy ; collagen ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; transforming growth factor ; decorin ; cardiomyopathy ; hypertrophy ; ischemia ; fibrosis; functional genomics ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure.There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403-410, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 411-426 
    ISSN: 0730-2312
    Keywords: bone marrow stroma ; human ; differentiation ; TGF-β ; BMP-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411-426, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 446-456 
    ISSN: 0730-2312
    Keywords: IGF-I ; IGF-II ; cAMP ; PKA ; PKC ; prostaglandin ; osteoblasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone cells synthesize and respond to IGF-I and IGF-II which contribute to bone remodeling and linear growth. In osteoblasts, prostaglandin (PG)E2 stimulates IGF-I but not IGF-II synthesis through a cAMP-dependent protein kinase A (PKA)-related event. However, protein kinase C (PKC) activation by PGE2 enhances replication and protein synthesis by less differentiated periosteal cells more so than in osteoblast-enriched cultures from fetal rat bone. Using various PGs and other PKA and PKC pathway activators, the importance of these aspects of PGE2 activity has now been examined on IGF receptors in these bone cell culture models. PGE2 and other agents that activate PKA enhanced 125I-IGF-II binding to type 2 IGF receptors on both cell populations. In contrast, agents that activate PKC enhanced 125I-IGF-I binding to type 1 receptors on less differentiated bone cells, and of these, only phorbol myristate acetate (PMA), which activates PKC in a receptor-independent way, was effective in osteoblast-enriched cultures. No stimulator increased total type 1 receptor protein in either cell population. Consequently, ligand binding to type 1 and type 2 IGF receptors is differentially modulated by specific intracellular pathways in bone cells. Importantly, changes in apparent type 1 receptor number occur rapidly and may do so at least in part through post-translational effects. These results may help to predict new ways to manipulate autocrine or paracrine actions by IGFs in skeletal tissue. J. Cell. Biochem. 68:446-456, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 484-499 
    ISSN: 0730-2312
    Keywords: YY1 ; zinc finger ; high-molecular-weight complex ; plasmid transfection ; nuclear matrix association ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: YY1 is a zinc finger-containing transcription factor that can both repress and activate transcription. YY1 appears to use multiple mechanisms to carry out its diverse functions. Recently, it was observed that YY1 can exist in multiple nuclear compartments. In addition to being present in the nuclear extract fraction, YY1 is also a component of the nuclear matrix. We show that YY1 can be sequestered in vivo into a high-molecular-weight complex and can be dislodged from this complex either by treatment with formamide or by incubation with an oligonucleotide containing the YY1 DNA binding site sequence. By transfecting plasmids expressing various YY1 deletion constructs and subsequent nuclear fractionation, we have identified sequences necessary for association with the nuclear matrix. These sequences (residues 256-340) co-localized with those necessary for in vivo sequestration of YY1 into the high-molecular-weight complex. We have also characterized YY1 sequences necessary for repression of activated transcription (residues 333-371) and those necessary for masking of the YY1 transactivation domain (residues 371-397). Sequences that repress activated transcription partially overlap YY1 sequences necessary for association with the nuclear matrix. However, these sequences are distinct from those that appear to mask the YY1 transactivation domain. The potential role of nuclear matrix association in controlling YY1 function is discussed. J. Cell. Biochem. 68:484-499, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 511-524 
    ISSN: 0730-2312
    Keywords: actin ; permeability ; reoxygenation ; signal transduction ; cytoskeletal rearrangement ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hypoxia/reoxygenation injury to cultured endothelial cells results in cytoskeletal rearrangement and second messenger activation related to increased monolayer junctional permeability. Cytoskeletal rearrangement by reactive oxygen species may be related to specific activation of the phospholipase D (PLD) pathway. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) or metabolites of the PLD pathway for 1-60 min. Changes in cAMP levels, Ca2+ levels, PIP2 production, filamin distribution, and intercellular gap formation are then quantitated. H2O2-induced filamin translocation from the membrane to the cytosol occurs after 1-min H2O2 treatment, while intercellular gap formation significantly increases after 15 min. H2O2 and phosphatidic acid exposure rapidly decrease intracellular cAMP levels, while increasing PIP2 levels in a Ca2+-independent manner. H2O2-induced cAMP decreases are prevented by inhibiting phospholipase D. H2O2-induced cytoskeletal changes are prevented by inhibiting phospholipase D, phosphatidylinositol-4-phosphate kinase, phosphoinositide turnover, or by adding a synthetic peptide that binds PIP2. These data indicate that metabolites produced downstream of H2O2-induced PLD activation may mediate filamin redistribution and F-actin rearrangement. J. Cell. Biochem. 68:511-524, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 19-29 
    ISSN: 0730-2312
    Keywords: interleukin-1 ; reactive oxygen species ; nitric oxide ; c-fos ; collagenase ; chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1) is implicated in cartilage destruction in arthritis through promotion of matrix metalloproteinase production. Upregulation of collagenase gene expression by IL-1 is known to require the transactivators Fos and Jun. Recently, reactive oxygen species (ROS) have been suggested to act as intracellular signaling molecules mediating the biological effects of cytokines. Here, we demonstrated ROS production by IL-1-stimulated bovine chondrocytes and that neutralizing ROS activity by the potent antioxidant, N-acetylcysteine, or inhibiting endogenous ROS production by diphenyleneiodonium (DPI), significantly attenuated IL-1-induced c-fos and collagenase gene expression. The inhibitory effect of DPI implicates enzymes such as NADPH oxidase in the endogenous production of ROS. Chondrocytes were also found to produce nitric oxide (NO) upon IL-1 stimulation. That NO may mediate part of the inducing effects of IL-1 was supported by the observation that L-NG-monomethylarginine, a NO synthase inhibitor, partially inhibited IL-1-regulated collagenase expression. Moreover, treatment of chondrocytes with the NO-producing agent, S-nitroso-N-acetylpenicillamine, was sufficient to induce collagenase mRNA levels. In summary, our results suggest that ROS released in response to IL-1 may function as second messengers transducing extracellular stimuli to their targets in the nucleus, leading to augmentation of gene expression. J. Cell. Biochem. 69:19-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 0730-2312
    Keywords: TGF-α ; antisense oligonucleotides ; head and neck cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interruption of an autocrine growth pathway involving TGF-α and EGFR may inhibit tumor growth and improve survival in head and neck cancer patients. We previously demonstrated that biopsy specimens and established cell lines from patients with squamous cell carcinoma of the head and neck (SCCHN) overexpress TGF-α and its receptor, epidermal growth factor receptor (EGFR) at both the mRNA and protein levels. Protein localization studies showed that TGF-α and EGFR are produced by the same epithelial cells in tissues from head and neck cancer patients further supporting a role for this ligand-receptor pair in an autocrine growth pathway. To confirm that TGF-α contributes to autocrine growth, we examined the effect of down regulation of TGF-α protein on SCCHN cell proliferation. Treatment of 6 SCCHN cell lines with antisense oligodeoxynucleotides targeting the translation start site of human TGF-α mRNA decreased TGF-α protein production by up to 93% and reduced cell proliferation by a mean of 76.2% compared to a 9.7% reduction with sense oligonucleotide (range P〈0R 〉 = 0.036-0.0001). TGF-α antisense oligonucleotide exposure also decreased TGF-α protein levels in normal oropharyngeal mucosal epithelial cells, however their growth rate was not affected. These findings indicate that TGF-α is participating in an autocrine signaling pathway in transformed, but not in normal mucosal epithelial cells, that promotes proliferation. J. Cell. Biochem. 69:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 81-86 
    ISSN: 0730-2312
    Keywords: cell communication ; osteoblasts ; stromal cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells. J. Cell. Biochem. 69:81-86, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 104-116 
    ISSN: 0730-2312
    Keywords: mRNA export ; cell cycle ; gene transfection ; cultured mammalian cells ; hnRNP L ; nuclear transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104-116, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 0730-2312
    Keywords: HB-EGF ; cleavage-secretion ; PKC ; ErbB1 ; EGF receptor ; matrix metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The phorbol ester, tetradecanoyl-phorbol 13-acetate (TPA), stimulates rapid proteolytic processing of the transmembrane, pro- form of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at cell surfaces, suggesting the involvement of protein kinase C (PKC) isoforms in the HB-EGF secretion mechanism. To test this possibility, we expressed a chimeric protein, consisting of proHB-EGF fused to placental alkaline phosphatase (AP) near the amino terminus of processed HB-EGF, in NbMC-2 prostate epithelial cells. The proHB-EGF-AP chimera localized to plasma membranes and functioned as a diphtheria toxin receptor. Secreted HB-EGF-AP bound to heparin and exhibited potent growth factor activity. The presence of the AP moiety allowed highly quantitative measurements of cleavage-secretion responses of proHB-EGF to extracellular stimuli. As expected, rapid secretion of HB-EGF-AP was induced in a time- and dose-dependent manner by TPA. However, this was also observed with the Ca2+ionophore, ionomycin, suggesting the involvement of extracellular Ca2+ ions in the secretion mechanism. Ionomycin-induced secretion was inhibited by extracellular calcium chelation but not by the PKC inhibitors, GF109203X, staurosporine, or chelerythrine. The TPA-mediated secretion effect was inhibited by staurosporine, GF109203X, and by pretreatment with TPA, but not by calcium chelation. A small secretion response was induced by thapsigargin, which releases Ca2+ from intracellular stores, but this was completely eliminated by extracellular calcium chelation. Ionomycin- and TPA-induced HB-EGF-AP secretion was not dependent on the presence of the proHB-EGF cytoplasmic domain and was specifically inhibited by the metalloproteinase inhibitors 1,10-phenanthroline and tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that extracellular Ca2+ influx activates a membrane-associated metalloproteinase to process proHB-EGF by a pathway that does not require PKC. J. Cell. Biochem. 69:143-153, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 304-312 
    ISSN: 0730-2312
    Keywords: polysialic acid ; neural and muscle development ; tissue plasticity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Polysialic acid (PSA) is a long polymer of negatively-charged sialic acid associated with the neural cell adhesion molecule. PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. During development the abundant and regulated expression of this carbohydrate is closely correlated with axon pathfinding and targeting, and with certain aspects of muscle formation. Its level can also be modulated by synaptic activity. PSA expression is more restricted in the neonatal and adult brain, being primarily associated with regions capable of morphological or physiological changes. Studies on the function of PSA studies suggest that its primary role is to promote developmentally-controlled and activity-dependent plasticity in cell interactions and thereby facilitate changes in the structure and function of the nervous system. The presence of PSA on a variety of metastatic tumor lines has also attracted the attention of oncologists, and its late appearance in evolution raises interesting questions about the phylogeny of complex tissue formation. J. Cell Biochem. 70:304-312, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 0730-2312
    Keywords: cytochrome P450 ; estrogen metabolism ; estradiol 4-hydroxylation ; estrogen receptor ; 2,3,7,8-tetrachlorodibenzo-p- dioxin ; polymerase chain reaction ; cancer biomarkers ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Elevated expression of cytochrome P450 1B1 (CYP1B1) and estradiol 4-hydroxylation have been reported to be biomarkers of tumorigenesis in humans. The aromatic hydrocarbon receptor (AhR) regulates expression of human cytochrome P450 1A1 (CYP1A1) and CYP1B1, 17β-estradiol (E2) 2- and 4-hydroxylases, respectively. There is also evidence that expression of estrogen receptor α (ERα) potentiates CYP1A1 inducibility in breast cancer cells. To characterize these relationships further, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), which downregulates ERα, and the high-affinity AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of AhR, ERα, CYP1A1, and CYP1B1 in MCF-7 human breast cancer cells. Treatment with TPA, which suppressed ERα mRNA levels, caused a greater than fourfold elevation of AhR mRNA and protein levels, whereas treatment with TCDD caused a decrease in AhR protein but no change in ERα or AhR mRNA levels. In MCF-7 cells treated with TPA prior to treatment with TCDD, the AhR mRNA level was elevated, the ERα mRNA level remained suppressed, and the ratio of CYP1B1 to CYP1A1 mRNA was increased compared with treatment with TCDD alone. A corresponding increase in the ratio of the rates of 4- to 2-hydroxylation pathways of E2 metabolism was also observed in response to pretreatment with TPA prior to the addition of TCDD. These results demonstrate differential regulation of the human CYP1A1 and CYP1B1 genes and provide a cellular model to investigate further the mechanisms that may be involved in the elevated expression of CYP1B1 in tumorigenesis. J. Cell. Biochem. 70:289-296, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 297-303 
    ISSN: 0730-2312
    Keywords: magnetic fields ; heat shock ; HSP70 gene expression ; protein binding sites ; nucleotide sequences ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mechanisms involved in sensing, signaling, and coordinating changes resulting from magnetic field-induced stress show substantial similarities to those of heat shock, e.g., magnetic field-induced heat shock 70 gene (HSP70) expression involves heat shock factor (HSF) activation and heat shock element binding. However, an additional requirement for transactivation of HSP70 expression by magnetic fields is the binding of Myc protein, indicating that additional elements and/or pathways are involved in the induction of HSP70 expression by magnetic fields. To investigate the possible participation of additional genetic elements in magnetic field-induced HSP70 expression, we examined both magnetic field exposure and heat shock on protein-DNA binding of the transcription factors HSF, AP-1, AP-2, and SP-1 in four human cell lines. The binding sites for these transcription factors are present in the HSP70 promoter. AP-1 binding activity, normally not increased by heat shock, was increased by magnetic fields; heat shock induced an increase only in HSF binding. Although intersecting and converging signaling pathways could account for the multiplicity of elements involved in magnetic field-induced HSP70 transcription, direct interaction of magnetic fields with DNA is also a possible mechanism. Because magnetic fields penetrate the cell, they could well react with conducting electrons present in the stacked bases of the DNA. J. Cell. Biochem. 70:297-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 0730-2312
    Keywords: proliferation ; cell cycle ; apoptosis ; cyclins ; p27Kip1 ; cell magnesium ; CD11b ; myeloid differentiation ; HL-60 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: When cultured in Mg restricted medium, human leukemic HL-60 cells develop morphological and functional granulocytic differentiation. In 0.03 mM Mg, cells display the distinctive features of differentiation, without appreciable inhibition of proliferation. In 0.01 mM Mg, cells show terminal differentiation, accompanied by clear inhibition of proliferation. Such cells accumulate in the G0/G1 phase and subsequently die via apoptosis, similar to HL-60 cells that have been induced to differentiate by DMSO. These phenotypic changes are associated with a marked increase in the expression level of the cyclin dependent kinase inhibitor p27Kip1. Cyclin E expression is also slightly increased in Mg restricted cells, whereas no changes are observed in the expression level of cyclin D1. We also show that during differentiation cell total Mg decreases, whereas [Mg2+]i increases in both Mg-depleted and DMSO-treated cells. These data suggest that the maturation process is paralleled by a redistribution of intracellular Mg, leading to a shift from the bound to the free form. These changes could modulate the kinetics of Mg-dependent enzyme(s) that are involved in the control of the differentiation pathway. We propose that this model may represent an useful tool for the study of the mechanisms of cell differentiation and related events, such as aging and death. J. Cell. Biochem. 70:313-322, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 323-329 
    ISSN: 0730-2312
    Keywords: steroids ; DNA replication ; carcinogenesis ; proliferation ; cell-free system ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: There is now convincing evidence associating estrogens with an increased risk of some cancers. However, the absence of a complete correlation between estrogen receptor binding and the biological activity of these estrogens has suggested the possibility of other mechanisms of action. The effect on DNA replication of several hormones that are putatively involved in breast cancer was tested at a physiological concentration. The studies were conducted in a HeLa cell-free system by using a plasmid containing a specific mammalian origin of replication (DHFR oriβ〈0R) as template DNA. A series of related steroids produced an entire range of activity from enhancement to inhibition of in vitro DNA replication. These studies indicate a new possible target, which may help to better understand the effect of these hormones in breast cancer. Furthermore, the results show that this in vitro DNA replication system provides an evaluative assay for the effects of compounds on hormone-responsive cancers independent of some hormone receptors. J. Cell. Biochem. 70:323-329, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 338-345 
    ISSN: 0730-2312
    Keywords: sphingosine ; interleukin-6 ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We previously reported that prostaglandin (PG)E1 and PGF2α induce the synthesis of interleukin-6 (IL-6) via activation of protein kinase (PK)A and PKC, respectively, in osteoblast-like MC3T3-E1 cells. In addition, we have shown that basic fibroblast growth factor (bFGF) elicits IL-6 synthesis through intracellular Ca2+ mobilization in these cells and that tumor necrosis factor-α (TNF) induces IL-6 synthesis through sphingosine 1-phosphate produced by sphingomyelin hydrolysis. In the present study, among sphingomyelin metabolites, we examined the effect of sphingosine on IL-6 synthesis induced by various agonists in MC3T3-E1 cells. Sphingosine inhibited the IL-6 synthesis induced by PGF2α or 12-O-tetradecanoylphorbol-13-acetate, an activator of PKC. Sphingosine suppressed the PGE1-induced IL-6 synthesis. The IL-6 synthesis induced by cholera toxin, forskolin, or dibutyryl cAMP was inhibited by sphingosine. Sphingosine inhibited the IL-6 synthesis induced by bFGF or A23187. However, sphingosine did not affect the IL-6 synthesis induced by interleukin-1. On the contrary, sphingosine enhanced the TNF-induced IL-6 synthesis. DL-threo-Dihydrosphingosine, an inhibitor of sphingosine kinase, reduced the enhancement by sphingosine as well as the TNF-effect. These results indicate that sphingosine modulates the IL-6 synthesis stimulated by various agonists in osteoblasts. J. Cell. Biochem. 70:338-345. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0730-2312
    Keywords: cadherin ; catenins ; thyroid carcinoma cell ; epithelial cell ; cell-cell adhesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: E-cadherin is the major cell-cell adhesion molecule expressed by epithelial cells. Cadherins form a complex with three cytoplasmic proteins, α-, β-, and γ-catenin, and the interaction between them is crucial for anchoring the actin cytoskeleton to the intercellular adherens junctions. The invasive behavior of cancer cells has been attributed to a dysfunction of these molecules. In this study, we examined the distribution of the cadherin-catenin complex in a Chinese human thyroid cancer cell line, CGTH W-2, compared with that in normal human thyroid epithelial cells. In the normal cells, using immunofluorescence staining, E-cadherin and α-, β-, and γ-catenin were found to be localized at the intercellular junction and appeared as 135, 102, 90, and 80 kD proteins on Western blots. In CGTH W-2 cells, no E-cadherin and γ-catenin immunoreactivity was detected by immunofluorescence or Western blotting; α- and β-catenin were detected as 102 and 90 kD proteins on blots but gave a diffuse cytoplasmic immunofluorescence staining pattern in most cells, while β-catenin was also distributed throughout the cytoplasm in most cells but was found at the cell junction in some, where it colocalized with α-actinin. The present data indicate that the loss of cell adhesiveness in these cancer cells may be due to incomplete assembly of the cadherin-catenin complex at the cell junction. However, this defect did not affect the linkage of actin bundles to vinculin-enriched intercellular junctions. J. Cell. Biochem. 70:330-337, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 346-353 
    ISSN: 0730-2312
    Keywords: MHC class II ; T-helper cells ; phosphotyrosine kinase ; phospholipase C-γ1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Major histocompatibility complex (MHC) class II are expressed on most activated human lymphocytes. They direct antigen presentation events in dendritic cells and B cells (collectively called antigen presenting cells), but the role for MHC class II in human T cells is not well understood. To understand the role of surface MHC class II and to identify the molecules involved in signaling, we have defined the early activation sequence in T cells when MHC class II are engaged by a specific antibody. Specifically, we have characterized the involvement of phosphotyrosine kinases, phospholipase C (PLC), and Ca2+ mobilization. With the engagement by either whole anti-class II antibody or its Fab fragments, the enzymatic activity of p56lck and ZAP-70 increased, but there was no increase in p59fyn activity. In addition, the intracellular free Ca2+ increased, which was due to enhanced influx and not to the mobilization of intracytoplasmic Ca2+. These events did not require cross-linking because they were not significantly augmented by the addition of antispecies antibody. The coimmunoprecipitation of tyrosine phosphorylated PLC-γ1 with surface MHC class II suggested that PLC-γ1 could be recruited to MHC class II after engagement. These results show the complexities of the early signals transduced by the engagement of surface MHC class II on T cells. J. Cell. Biochem. 70:346-353, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 354-365 
    ISSN: 0730-2312
    Keywords: human fetal colon ; apolipoprotein A-I, A-IV, B-48, B-100 ; hydrocortisone ; insulin ; epidermal growth factor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The present investigation aimed at defining the localization of apolipoproteins (apo) A-I, A-IV, B-48, and B-100 along the crypt-villus axis of the human fetal colon, their biogenesis during gestation, and their hormonal regulation. Using immunofluoresence, the distribution of apo A-I and A-IV appeared as a gradient, increasing from the developing crypt to the tip of the villus. On the other hand, apo B-100 staining was found in the crypt and the lower mid-villus region with varying intensities in the upper villus cells, while the 2D8 antibody which recognizes both apo B-100 and B-48, revealed uniform staining along the crypt-villus axis. Apolipoprotein synthesis, determined by [35S] methionine labeling, immunoprecipitation, and SDS-PAGE showed a predominance of apo A-IV (53%), followed by apo A-I (23.9%), apo B-48 (13.4%), and apo B-100 (9.7%). The synthesis of each apolipoprotein was significantly modulated by hydrocortisone, insulin and epidermal growth factor (EGF). Apart from a decrease in apo B-100 exerted by EGF and a reduction in apo A-I resulting from the addition of insulin, the other apolipoproteins were all enhanced. Our data confirm that the fetal colon has the capacity to synthesize apolipoprotein A-I, A-IV, B-48, and B-100 and establish that their synthesis are modulated by hormonal and growth factors known to be involved in the regulatory mechanism of the functional development of human jejunum. J. Cell. Biochem. 70:354-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 366-375 
    ISSN: 0730-2312
    Keywords: transcription ; myogenesis ; MADS domain ; DNA binding ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previous investigations have demonstrated synergistic interactions in vivo between CCAC and A/T-rich nucleotide sequence motifs as functional components of muscle-specific transcriptional enhancers. Using CCAC and A/T-rich elements from the myoglobin and muscle creatine kinase (MCK) gene enhancers, Sp1 and myocyte-specific enhancer factor-2 (MEF-2) were identified as cognate binding proteins that recognize these sites. Physical interactions between Sp1 and MEF-2 were demonstrated by immunological detection of both proteins in DNA binding complexes formed in vitro by nuclear extracts in the presence of only the A/T sequence motif, by coprecipitation of recombinant MEF-2 in the presence of a glutathione-S-transferase-Sp1 fusion protein bound to glutathione beads, and by a two-hybrid assay in Saccharomyces cerevisiae. The interaction with Sp1 in vitro and in vivo is specific for MEF-2 and was not observed with serum response factor, a related MADS domain protein. Forced expression of Sp1 and MEF-2 in insect cells otherwise lacking these factors promotes synergistic transcriptional activation of a promoter containing binding sites for both proteins. These data expand the repertoire of functional and physical interactions between lineage-restricted (MEF-2) and ubiquitous (Sp1) transcription factors that may be important for myogenic differentiation. J. Cell. Biochem. 70:366-375, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 0730-2312
    Keywords: anabolic ; bone ; MMP-9 ; osteoblast ; parathyroid hormone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Intermittent doses of parathyroid hormone (PTH) stimulate bone formation in animals and humans, but the molecular mechanisms underlying this phenomenon are not understood. Bone formation culminates with the expression of type I collagen, osteocalcin, and alkaline phosphatase, but genes that initiate and support the anabolic response are not known. To identify novel PTH-regulated genes in bone during the anabolic response, we used differential display-polymerase chain reaction (DDRT-PCR) to analyze RNA from young male rats injected with either human PTH (1-34) or vehicle control, once daily for 5 days. Total RNA was isolated from the distal femur metaphysis at 1, 6, and 48 h after the final injection and subjected to DDRT-PCR. We identified three PTH-responsive transcripts as matrix metalloproteinase-9 (MMP-9), creatine kinase, and the α1(I) polypeptide chain (COL1A1) of type I collagen. The concomitant upregulation of MMP-9 and COL1A1 during bone formation was particularly intriguing. Further characterization of MMP-9 expression revealed that it was localized to osteoblasts, osteocytes, megakaryocytes, and cells of the bone marrow in the rat distal femur metaphysis. Northern analysis for MMP-9 expression in other tissues indicated that this transcript was present in the kidney and brain. In vitro, PTH regulated the protein synthesis of MMP-9 by osteoblasts of the primary spongiosa. We propose that PTH may promote bone formation by mediating the subtle variation in MMP activities, thus preparing the extracellular matrix for the subsequent bone cell migration and deposition of new osteoid. J. Cell. Biochem. 70:391-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0730-2312
    Keywords: osteopontin ; integrins ; mechano-transduction ; tyrosine kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteopontin is a predominant integrin binding protein of bone and its expression has been shown to be induced by mechanical stimuli within osteoblasts (Toma et al. [1997] J. Bone Miner. Res. 12:1626-1636). The present studies examined if the cell adhesion would mimic the mechano-transduction that stimulated opn mRNA expression and whether integrin receptors were involved in these processes. Osteopontin mRNA expression was induced three- to four-fold, 24 hours after embryonic chicken calvaria osteoblast attachment to fibronectin (FN), however no induction was observed if the cells were plated on tissue culture plastic alone. Osteopontin mRNA induction in response to cell attachment on FN was dependent on new protein synthesis and the activation of a tyrosine protein kinase(s) but unlike mechano-induction was independent of the maintenance of the cell's microfilament structure. Integrin receptor(s) were shown to be involved in mediating the signal transduction processes of both cell attachment and mechanical stimulation since incubation of osteoblasts with the integrin binding peptide RGDS partially blocked the induction of opn expression in response to both stimuli. Interestingly, incubation of the osteoblasts that were adherent on tissue culture plastic alone with the RGDS peptide lead to an induction in opn expression suggesting that integrin occupancy by itself was sufficient to initiate the signal transduction process that induced opn expression. In order to assess the role of integrin occupancy vs. focal adhesion complex formation that accompanies cell attachment, in the signal transduction process that induces opn expression, receptor clustering was stimulated pharmacologically with bombesin or lysophasphatidic acid in osteoblasts attached to tissue culture plastic. Neither compound in the absence of occupancy of the integrin receptors was capable of stimulating opn expression in attached cells, however if the cells were placed in suspension pharmacological mediation of receptor clustering and integrin occupancy were additive in their effect of inducing opn expression. These data demonstrate that induction of opn expression by mechanical stimuli and cell attachment are commonly mediated through integrin receptor(s). However, when cells are attached receptor clustering alone which accompanies focal adhesion formation was incapable of mediating signal transduction suggesting that receptor occupancy was a prerequisite to the signal transduction process that leads to the induction of opn mRNA expression. J. Cell. Biochem. 70:376-390. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 0730-2312
    Keywords: genome ; calmodulin ; smooth muscle ; immunohistochemistry ; heart ; development ; protein kinase ; tissue selective ; calcium ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We report that the genetic locus that encodes vertebrate smooth muscle and nonmuscle myosin light chain kinase (MLCK) and kinase-related protein (KRP) has a complex arrangement and a complex pattern of expression. Three proteins are encoded by 31 exons that have only one variation, that of the first exon of KRP, and the genomic locus spans approximately 100 kb of DNA. The three proteins can differ in their relative abundance and localization among tissues and with development. MLCK is a calmodulin (CaM) regulated protein kinase that phosphorylates the light chain of myosin II. The chicken has two MLCK isoforms encoded by the MLCK/KRP locus. KRP does not bind CaM and is not a protein kinase. However, KRP binds to and regulates the structure of myosin II. Thus, KRP and MLCK have the same subcellular target, the myosin II molecular motor system. We examined the tissue and cellular localization of KRP and MLCK in the chicken embryo and in adult chicken tissues. We report on the selective localization of KRP and MLCK among and within tissues and on a differential distribution of the proteins between embryonic and adult tissues. The results fill a void in our knowledge about the organization of the MLCK/KRP genetic locus, which appears to be a late evolving regulatory paradigm, and suggest an independent and complex regulation of expression of the gene products from the MLCK/KRP genetic locus that may reflect a basic principle found in other eukaryotic gene clusters that encode functionally linked proteins. J. Cell. Biochem. 70:402-413, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...