Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2,834)
  • 1980-1984  (4,069)
  • 1925-1929  (808)
  • Cell & Developmental Biology  (7,709)
  • Nuclear reactions
Material
Years
Year
  • 201
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 442-454 
    ISSN: 0730-2312
    Keywords: UV irradiation ; PAK2 ; apoptosis ; CPP32/caspase-3 ; A431 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and can also lead to apoptotic cell death. In this report, we show that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be dramatically activated during the early stages of UV irradiation-triggered apoptosis of A431 cells. Immunoblot analysis revealed that this 36-kDa MBP kinase could be recognized by an antibody against the C-terminal regions of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as studying tools, we further demonstrated that UV irradiation caused cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment and a 30-kDa N-terminal fragment in A431 cells. The appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in A431 cells upon UV irradiation. In addition, UV irradiation also led to activation of CPP32/caspase-3, but not ICH-1L/caspase-2 and ICE/caspase-1, in A431 cells and the kinetics of activation of CPP32/caspase-3 appeared to correlate well with that of DNA fragmentation and of cleavage/activation of PAK2, respectively. Moreover, blockage of activation of CPP32/caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors for caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could significantly attenuate the extent of cleavage/activation of PAK2 induced by UV irradiation. Collectively, the results demonstrate that cleavage and activation of PAK2 can be induced during the early stages of UV irradiation-triggered apoptosis and indicate the involvement of CPP32/caspase-3 in this process. J. Cell. Biochem. 70:442-454, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 202
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 489-506 
    ISSN: 0730-2312
    Keywords: hematopoiesis ; protein interaction ; EMSA ; nucleolin ; nucleophosmin/NPM/B23 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The human myeloid nuclear differentiation antigen, MNDA, is expressed only in myelomonocytic and a subset of B lymphoid hematopoietic cells. MNDA is uniformly distributed throughout the interphase cell nucleus and associates with chromatin, but does not bind specific DNA sequences. We recently demonstrated that MNDA binds nucleolin and nucleophosmin/NPM/B23 and both of these nuclear proteins bind the ubiquitous zinc finger transcription factor YY1. Investigations of the possible effect of MNDA on the interaction between YY1 and NPM, showed that MNDA bound YY1 directly under both in vitro and in vivo conditions. The MNDA-YY1 interaction enhanced the affinity of YY1 for its target DNA and decreased its rate of dissociation. The N-terminal half (200 amino acids) of MNDA was sufficient for maximum enhancement of YY1 DNA binding and a portion of this sequence was responsible for binding YY1. MNDA participated in a ternary complex with YY1 and the YY1 target DNA element. The results show that MNDA affects the ability of YY1 to bind its target DNA sequnce and that MNDA participates in a ternary complex possibly acting as a cofactor to impart lineage specific features to YY1 function. J. Cell. Biochem. 70:489-506, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 203
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 507-516 
    ISSN: 0730-2312
    Keywords: type X collagen; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Collagen X is expressed specifically in hypertrophic chondrocytes within cartilage that is undergoing endochondral ossification. The chicken collagen X gene is transcriptionally regulated, and under the control of multiple cis elements within the distal promoter region (-4,442 to -558 base pairs from the transcription start) as well as the proximal region (-558 to +1). Our previous data (LuValle et al., [1993] J. Cell Biol. 121:1173-1179) demonstrated that the proximal sequence directed high reporter gene activity in the three cell types tested (hypertrophic chondrocytes, immature chondrocytes, and fibroblasts), while distal elements acted in an additive manner to repress the effects of the proximal sequence on reporter gene activity in non-collagen X expressing cells only (immature chondrocytes and fibroblasts). We show here that elements within the proximal sequence (nucleotides -557 to -513) are necessary for the cell-specific expression of type X collagen by hypertrophic chondrocytes. These elements bind to proteins of 100 kDa in all three cell types, and 47 kDa in non-collagen X expressing cells. Reporter gene activity in hypertrophic chondrocytes is reduced to the levels seen in non-collagen X-expressing cells in the absence of these elements. J. Cell. Biochem. 70:507-516, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 204
    ISSN: 0730-2312
    Keywords: scleraxis ; transcription factor ; FGF ; chondrocyte ; bHLH ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Scleraxis is a basic helix-loop-helix-type transcription factor that is expressed in sclerotome. Fibroblast growth factor (FGF) is one of the cytokines produced by the cells in skeletal tissues and is a potent modulator of skeletogenesis. The aim of this study was to examine the effects of FGF on the expression of scleraxis in chondrocyte-like cells, TC6. In these cells, scleraxis mRNA was constitutively expressed as a 1.2kb message at a high level in contrast to its low levels of expression in fibroblast-like cells or osteoblast-like cells. Upon treatment with FGF, scleraxis mRNA level was decreased within 12 h. This effect was at its nadir at 24 h and the scleraxis mRNA level returned to its base line level by 48 h. The FGF effect was maximal at 1 ng/ml. FGF effects on scleraxis were blocked by actinomycin D but not by cycloheximide, suggesting the involvement of transcriptional events that do not require new protein synthesis. The FGF effects on scleraxis were blocked by genistein, suggesting the involvement of tyrosine kinase in the post-receptor signaling. TGFβ treatment of TC6 cells enhanced scleraxis mRNA expression; however, combination of the saturation doses of FGF and TGFβ resulted in suppression of scleraxis mRNA level. BMP2 also suppressed scleraxis mRNA expression in TC6 cells and no further suppression was observed in combination with FGF. These results indicate that scleraxis is expressed in chondrocyte-like TC6 cells and it is one of the targets of FGF action in these cells. J. Cell. Biochem. 70:468-477. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 205
    ISSN: 0730-2312
    Keywords: arthritis ; cartilage ; gene regulation ; kinases ; signaling ; tissue inhibitors of metalloproteinases ; transforming growth factor beta ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulates extracellular matrix turn-over in normal animal development, cancer cell metastasis, atherosclerotic plaque rupture and erosion of arthritic cartilage. Transforming growth factor beta (TGF-β), an inducer of matrix synthesis, potently enhances mRNA and protein of a recently characterized MMP inhibitor, TIMP-3, in bovine articular chondrocytes. We examined the implication of protein kinases in the TGF-β-mediated induction of TIMP-3 expression by utilizing activators and inhibitors of these enzymes. Protein kinase A activators, dibutyryl cyclic AMP, or forskolin had little or no effect, respectively, while phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased TIMP-3 gene expression. H7, a serine/threonine protein kinase inhibitor, markedly reduced the response of TIMP-3 gene to TGF-β. Furthermore, two protein tyrosine kinase inhibitors, genistein and herbimycin A, inhibited TGF-β induction of TIMP-3. H7 and genistein also suppressed TGF-β-induced TIMP-3 protein expression. These results suggest that TGF-β signaling for TIMP-3 gene induction involves H7-sensitive serine/threonine kinase as well as herbimycin A- and genistein-sensitive protein tyrosine kinases. J. Cell. Biochem. 70:517-527, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 206
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 478-488 
    ISSN: 0730-2312
    Keywords: osteoporosis ; osteopenia ; aging ; bone formation ; growth factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: One of the universal characteristics of the long bones and spines of middle-age and older mammals is a loss in bone mass (osteopenia). In humans, if this bone loss is severe enough, it results in osteoporosis, a skeletal disorder characterized by a markedly increased incidence of fractures with sequelae that may include pain, loss of mobility, and in the event of hip fracture, even death within a relatively few months of injury. An important contributing factor to the development of osteopororsis appears to be a diminution in the number and activity of osteoblasts responsible for synthesizing new bone matrix. The findings in the present and other similar studies suggest that this reduction in osteoblast number and activity is due to an age-related diminution in the size and osteogenic potential of the bone marrow osteoblast progenitor cell (OPC or CFU-f) compartment. We previously postulated that these regressive changes in the OPC/CFU-f compartment occurred in old animals because of a reduction in the amount and/or activity of TGF-β1, an autocrine growth factor important in the promotion of OPC/CFU-f proliferation and differentiation. In support of this hypothesis, we now report that (1) the osteogenic capacity of the bone marrow of 24-month-old BALB/c mice, as assessed in vivo, is markedly reduced relative to that of 3-4-month-old animals, (2) that the matrix of the long bones of old mice contains significantly less TGF-β than that of young mice, (3) that OPC's/CFU-f's isolated from old mice produce less TGF-β in vitro than those recovered from young mice, and (4) that OPC's/CFU-f's from old mice express significantly more TGF-β receptor (Types I, II, and III) than those of young animals and that such cells are more responsive in vitro to exogenous recombinant TGF-β1. We also find that colony number and proliferative activity of OPC's/CFU-f's of young mice and old mice, respectively, are significantly reduced when incubated in the presence of neutralizing TGF-β1 antibody. Collectively, these data are consistent with the hypothesis that in old male mice the reduction in the synthesis and, perhaps, availability from the bone matrix of TGF-β1 contributes to a diminution in the size and development potential of the bone marrow osteoprogenitor pool. J. Cell. Biochem. 70:478-488. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 207
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 528-542 
    ISSN: 0730-2312
    Keywords: c-Myc ; Cdk ; Cdk inhibitors ; keratinocytes ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The function of the c-myc proto-oncogene in cell cycle progression remains unclear. In order to examine the role c-myc may play in cell cycle progression, we have expressed the hormone-inducible MycER protein in the nontransformed, EGF-dependent mouse keratinocyte cell line BALB/MK. We have found that activation of MycER, but not a mutant MycER, Gal4ER, or FosER, leads to an EGF-dependent and hormone-dependent increased incorporation of labeled thymidine only during the S phase of the cell cycle in BALB/MK cells. A possible explanation for the increase in thymidine incorporation comes from flow cytometric analyses that reveal that activation of MycER leads to an increase in the total number of cells that enter S phase after EGF restimulation. Investigation of the intracellular effects of Myc activation shows that the expression of several putative Myc-sensitive proteins, cyclins A, E, and D1, and the E2F-1 protein are unaffected by Myc induction. Interestingly, we find that the histone H1 kinase activity associated with an E2F-1 complex containing Cyclin A and Cdk-2, but not that associated with Cyclin E, in late G1 and early S phases is increased in cells containing hormone-activated MycER, but not FosER. Although the mechanism for this Myc-dependent effect on E2F-1-associated kinase activity is still unknown, it does not appear to involve dissociation of the Cdk inhibitor p27Kip1 from the complexes as suggested by others. However, we have also found that hormone-treated cells actually show more p16INK4A inhibitor associated with another kinase, Cdk-4, as the cells are entering S phase. Altogether, the data suggest that the presence of excessive Myc protein in keratinocytes can stimulate otherwise noncycling cells to enter the cell cycle, and that this effect of Myc involves both positive effects on E2F-1-associated Cdk-2 and negative effects on Cdk-4 in late G1. J. Cell Biochem. 70:528-542, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 208
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 543-552 
    ISSN: 0730-2312
    Keywords: SPARC ; endothelial cell ; cell spreading ; focal adhesion ; actin ; vinculin ; PTK inhibitors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: SPARC, a counteradhesive matricellular protein, inhibits endothelial cell adhesion and proliferation, but the pathways through which these activities are blocked are not known. In this study, we used inhibitors of major signaling proteins to identify mediators through which SPARC exerts its counteradhesive and antiproliferative functions. Pretreatments with the general protein tyrosine kinase (PTK) inhibitors, herbimycin A and genistein, protected against the inhibitory effect of SPARC on bovine aortic endothelial (BAE) cell spreading by more than 60 %. Similar pretreatments with PTK inhibitors significantly blocked the diminishment of focal adhesions by SPARC in confluent BAE cell monolayers, as determined by the formation of actin stress-fibers and the distribution of vinculin in focal adhesion plaques. Inhibition of endothelial cell cycle progression by SPARC and a calcium-binding SPARC peptide, however, was not affected by PTK inhibitors. Inhibition of DNA synthesis by SPARC was not reversed by inhibitors of the activity of protein kinase C (PKC), or of cAMP-dependent protein kinase (PKA), but was sensitive to pertussis (and to a lesser extent, cholera) toxin. The counteradhesive effect of SPARC on endothelial cells is, therefore, mediated through a tyrosine phosphorylation-dependent pathway, whereas its antiproliferative function is dependent, in part, on signal transduction via a G protein-coupled receptor. J. Cell. Biochem. 70:543-552, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 209
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 553-562 
    ISSN: 0730-2312
    Keywords: coimmunoprecipitation of Gβ subunit and tubulin ; in situ incorporation of Gβ protein into microtubules ; microtubule assembly ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previously, we have identified the association of G protein β subunit (Gβ) with mitotic spindles in various mammalian cells. Since microtubules are the main component of mitotic spindles, here we have isolated bovine brain microtubules and purified Gβ subunit to identify the close association of Gβ subunit with purified brain microtubules and have shown the direct incorporation of Gβ subunit into the microtubules both in vitro and in vivo. It was found that: (1) microtubular fraction isolated from bovine brain contained Gβ subunit, (2) coimmunoprecipitation demonstrated that Gβ subunit could be coprecipitated with tubulin, (3) addition of purified Gβ subunit into cytosolic extract for microtubule assembly caused direct incorporation of Gβ subunit into assembled microtubules and increased the association of microtubule-associated proteins with microtubules, and (4) incubation of exogenous Gβ subunit with detergent-permeabilized cells resulted in direct incorporation of Gβ subunit into microtubule fibers and depolymerized tubulin molecules. We conclude that G protein β subunit is closely associated with microtubules and may play an important role in the regulation of microtubule formation in addition to its regulatory role in cellular signal transduction. J. Cell. Biochem. 70:553-562, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 210
    ISSN: 0730-2312
    Keywords: breast carcinoma ; ERK pathway ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AU565 breast carcinoma cell line was used to determine the role of the extracellular-regulated kinase (ERK) pathway in mediating Heregulinβ1 (HRGβ1)-induced mammary cell differentiation. ERK activation remained elevated for 2 h following high doses of HRG which induce differentiation. In contrast, a transient 5 min peak of ERK activation in response to doses of HRG which induce proliferation was observed. A MEK specific inhibitor, PD98059, which inhibited activation of ERK in response to HRG, completely blocked HRG-induced differentiation and reversed cell growth arrest. To further assess the importance of sustained ERK activity in cellular differentiation, we transiently transfected a mutant constitutively active MEK1 construct into AU565 cells. Differentiation was induced in the absence of HRG and treatment with HRG potentiated this response. These data indicate that sustained activation of the MEK/ERK pathway is both essential and sufficient for HRG-induced differentiation of AU565 cells. J. Cell. Biochem. 70:587-595, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 211
    ISSN: 0730-2312
    Keywords: heparan sulfate and growth factors ; heparan sulfate and phorbol ester ; heparan sulfate and cell cycle ; proteoglycans and cell cycle ; cell cycle; phorbol ester and heparan sulfate ; heparan sulfate and PKC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal calf serum (FCS) and PMA (phorbol 12-myristate-13-acetate) specifically stimulate the synthesis of heparan sulfate proteoglycan in endothelial cells. Staurosporine and n-butanol, kinase inhibitors, abolish the PMA effect. Forskolin and 8-bromo adenosine 3′:5′-cyclic monophosphate, activators of, respectively, adenylate cyclase and protein kinase A cannot reproduce the PMA effect. The kinetics of cell entry into S phase of the endothelial cells was determined by DNA synthesis ([3H]-thymidine and Br-dU incorporation), and flow cytometry. The mitogenic effect of fetal calf serum is abolished by PMA. Also, PMA pre-treatment inhibits the enhanced synthesis of heparan sulfate proteoglycan after a second PMA exposure. Remarkably, the stimulation of heparan sulfate proteoglycan synthesis by fetal calf serum and PMA seems to be mainly restricted to G1 phase. Therefore fetal calf serum and PMA cause an enhanced synthesis of heparan sulfate proteoglycan, and PMA causes a cell cycle block at G1 phase. J. Cell. Biochem. 70:563-572, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 212
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 596-603 
    ISSN: 0730-2312
    Keywords: poly(ADP-ribose) ; PARP ; nuclear matrix ; noncovalent interactions ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent evidence suggests that poly(ADP-ribose) may take part in DNA strand break signalling due to its ability to interact with and affect the function of specific target proteins. Using a poly(ADP-ribose) blot assay, we have found that several nuclear matrix proteins from human and murine cells bind ADP-ribose polymers with high affinity. The binding was observed regardless of the procedure used to isolate nuclear matrices, and it proved resistant to high salt concentrations. In murine lymphoma LY-cell cultures, the spontaneous appearance of radiosensitive LY-S sublines was associated with a loss of poly(ADP-ribose)-binding of several nuclear matrix proteins. Because of the importance of the nuclear matrix in DNA processing reactions, the targeting of matrix proteins could be an important aspect of DNA damage signalling via the poly ADP-ribosylation system. J. Cell. Biochem. 70:596-603. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 213
    ISSN: 0730-2312
    Keywords: skin ; signaling ; wound healing ; skin diseases ; receptor regulation ; cell proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Keratinocytes play a critical role in re-epithelialization during wound healing, and alterations in keratinocyte proliferation and function are associated with the development of various skin diseases. Although it is well documented that TGF-β has profound effects on keratinocyte growth and function, there is a paucity of information on the types, isoform specificity and complex formation of TGF-β receptors on keratinocytes. Here, we report that in addition to the types I, II, and III TGF-β receptors, early passage adult and neonatal human keratinocytes display a cell surface glycosylphosphatidylinositol (GPI)-anchored 150 kDa TGF-β1 binding protein. The identities of the four proteins were confirmed on the basis of their affinity for TGF-β isoforms, immunoprecipitation with specific anti-receptor antibodies, sensitivity to phosphatidylinositol specific phospholipase C and dithiothreitol, and 2-dimensional electrophoresis. Interestingly, the antitype I TGF-β receptor antibody immunoprecipitated not only the type I receptor, but also the type II receptor and the 150 kDa component, suggesting that the 150 kDa component form heteromeric complexes with the signalling receptors. In addition, two-dimensional (nonreducing/reducing) electrophoresis confirmed the occurrence of a heterotrimeric complex consisting of the 150 kDa TGF-β1 binding protein, the type II receptor, and the type I receptor. This technique also demonstrated the occurrence of types I and II heterodimers and type I homodimers of TGF-β receptors on keratinocytes, supporting the heterotetrameric model of TGF-β signalling proposed using mutant cells and cells transfected to overexpress these receptors. The keratinocytes responded to TGF-β by markedly downregulating all four TGF-β binding proteins and by potently inhibiting DNA synthesis. The demonstration that the 150 kDa GPI-anchored TGF-β1 binding protein forms a heteromeric complex with the TGF-β signalling receptors suggests that this GPI-anchored protein may modify TGF-β signalling in human keratinocytes. J. Cell. Biochem. 70:573-586, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 214
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 604-615 
    ISSN: 0730-2312
    Keywords: DNA replication ; apoptosis ; DNA cleavage ; endonuclease ; Bal 31 ; topological domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have addressed the association between the site of DNA cleavage during apoptosis and DNA replication. DNA double strand breaks were introduced into chromatin containing pulse labeled nascent DNA by the induction of apoptosis or autocleavage of isolated nuclei. The location of these breaks in relation to nascent DNA were revealed by Bal 31 exonuclease digestion at the cut sites. Our data show that Bal31 accessible cut sites are directly linked to regions enriched in nascent DNA. We suggest that these regions coincide with the termini of replication domains, possibly linked by strong DNA-matrix interactions with biophysically defined topological structures of 0.5 - 1.3 Mbp in size. The 50 kbp fragments that are commonly observed as products of apoptosis are also enriched in nascent DNA within internal regions but not at their termini. It is proposed that these fragments contain a subset of replicon DNA that is excised during apoptosis through recognition of their weak attachment to the nuclear matrix within the replication domain.J. Cell. Biochem. 70:604-615, 1998. © 1998 Wiley-Liss, Inc. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 215
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 11-20 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; DNA replication ; α-polymerase ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the association of DNA polymerase and DNA primase activity with the nuclear matrix in HeLa S3 cells diluted with fresh medium after having been cultured without any medium change for 7 days. Flow cytometric analysis demonstrated that just before dilution about 85% of the cells were in the G1 phase of the cycle, whereas 8% were in the S phase. After dilution with fresh medium, 18-22 h were required for the cell population to attain a stable distribution with respect to the cell cycle. At that time, about 38% of the cells were in the S phase. DNA polymerase and DNA primase activity associated with the nuclear matrix prepared from cells just before dilution represented about 10% of nuclear activity. As judged by [3H]-thymidine incorporation and flow cytometric analysis, an increase in the number of S-phase cells was evident at least 6 h after dilution. However, as early as 2 h after dilution into fresh medium, a striking prereplicative increase of the two activitites was seen in the nuclear matrix fraction but not in cytosol or isolated nuclei. Both DNA polymerase and primase activities bound to the matrix were about 60% of nuclear activity. Overall, the nuclear matrix was the cell fraction where the highest induction (about 10-fold) of both enzymatic activities was seen at 30 h after dilution, whereas in cytosol and isolated nuclei the increase was about two- and fourfold, respectively. Typical immunofluorescent patterns given by an antibody to 5-bromodeoxyuridine were seen after dilution. These findings, which are at variance with our own previous results obtained with cell cultures synchronized by either a double thymidine block or aphidicolin exposure, strengthen the contention that DNA replication is associated with an underlying nuclear structure and demonstrate the artifacts that may be generated by procedures commonly used to synchronize cell cultures. J. Cell. Biochem. 71:11-20, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 216
    ISSN: 0730-2312
    Keywords: immunocytochemistry ; breast cancer ; monoclonal antibody ; subcellular localization ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The arsenite-stimulated human ATPase (hASNA-I) protein is a distinct human ATPase whose cDNA was cloned by sequence homology to the Escherichia coli ATPase arsA. Its subcellular localization in human malignant melanoma T289 cells was examined to gain insight into the role of hASNA-I in the physiology of human cells. Immunocytochemical staining using the specific anti-hASNA-I monoclonal antibody 5G8 showed a cytoplasmic, perinuclear, and nucleolar distribution. Subcellular fractionation indicated that the cytoplasmic hASNA-I was soluble and that the perinuclear distribution was due to association with the nuclear membrane rather than with the endoplasmic reticulum. Its presence in the nucleolus was confirmed by showing colocalization with an antibody of known nucleolar specificity. Further immunocytochemical analysis showed that the hASNA-I at the nuclear membrane was associated with invaginations into the nucleus in interphase cells. These results indicate that hASNA-I is a paralogue of the bacterial ArsA protein and suggest that it plays a role in the nucleocytoplasmic transport of a nucleolar component. J. Cell. Biochem. 71:1-10, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 217
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 36-45 
    ISSN: 0730-2312
    Keywords: chemokine receptor CCR5 ; G-protein activation ; receptor desensitization ; internalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chemokine receptor CCR5 is not only essential for chemotaxis of leukocytes but also has been shown to be a key coreceptor for HIV-1 infection. In the present study, hemagglutinin epitope-tagged human CCR5 receptor was stably expressed in Chinese hamster ovary cells or transiently expressed in NG108-15 cells to investigate CCR5-mediated signaling events. The surface expression of CCR5 was confirmed by flow cytometry analysis. The CCR5 agonist RANTES stimulated [35S]GTPγS binding to the cell membranes and induced inhibition on adenylyl cyclase activity in cells expressing CCR5. The effects of RANTES were CCR5 dependent and could be blocked by pertussis toxin. Furthermore, overexpression of Giα2 strongly increased both RANTES-dependent G-protein activation and inhibition on adenylyl cyclase in cells cotransfected with CCR5. These data demonstrated directly that activation of CCR5 stimulated membrane-associated inhibitory G proteins and indicated that CCR5 could functionally couple to G-protein subtype Giα2. The abilities of CCR5 to activate G protein and to inhibit cellular cAMP accumulation were significantly diminished after a brief prechallenge with RANTES, showing rapid desensitization of the receptor-mediated responsiveness. Prolonged exposure of the cells to RANTES caused significant reduction of surface CCR5 as measured by flow cytometry, indicative of agonist-dependent receptor internalization. Our data thus demonstrated that CCR5 functionally couples to membrane-associated inhibitory G proteins and undergoes agonist-dependent desensitization and internalization. J. Cell. Biochem. 71:36-45, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 218
    ISSN: 0730-2312
    Keywords: heat shock protein ; heat shock genes ; heat shock element ; heat shock factor ; basal transcription elements ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Exposure of 9L rat brain tumor cells to 40-100 μM CdCl2 for 2 h leads to an induction of a wide spectrum of heat shock proteins (HSPs). We have demonstrated that induction of the 70-kDa HSP (HSP70) and enhanced expression of its cognate (HSC70) by cadmium are concentration dependent and that the induction kinetics of these HSP70s are different. The increased synthesis of the HSP70s is accompanied by the increase in hsp70 and hsc70 mRNA levels, indicative of transcriptional regulation of the heat shock genes. Electrophoretic mobility shift assay (EMSA) using probes encompassing heat shock element (HSE), TATA, GC, and CCAAT boxes derived from the promoter regions of the heat shock genes shows distinguished binding patterns between hsp70 and hsc70 genes in both control and cadmium-treated cells. The results indicate that, in addition to the HSEs, the basal transcription elements are important in the regulation of the heat shock genes. The binding patterns of the corresponding transcription factors of these elements are examined by EMSA by using extended promoter fragments from respective heat shock genes with sequential addition of excess oligonucleotides encompassing individual transcription elements. Taken together, our results show that the differential induction of hsp70 and hsc70 involves multiple transcription factors that interact with HSE, TATA, GC, and CCAAT boxes. J. Cell. Biochem. 71:21-35, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 219
    ISSN: 0730-2312
    Keywords: intestinal epithelium ; cell growth ; cell differentiation ; HIEC ; Caco-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The integrin α9β1 is one of the recently identified integrins whose expression is restricted to specialized tissues. Its exact function is still unknown. In the present study, we have analyzed the expression of the α9 subunit in human fetal and adult small intestinal and colonic epithelia as well as in intestinal cell lines by indirect immunofluorescence, immunoprecipitation, Western blot, and Northern blot. In intact tissues, the antigen was restricted to the basolateral domain of epithelial cells in intestinal crypts at the fetal stage and was absent in the adult. The α9β1 integrin was also detected in the intestinal cell lines HIEC-6 and Caco-2/15. The presence of α9β1 in HIEC-6 was found to be consistent with their proliferative crypt-like status. In Caco-2/15 cells, the integrin was present at high levels in proliferating cells but was downregulated when cells cease to grow and undertake their differentiation. EGF treatment, which is known to maintain Caco-2/15 cells in a proliferative state, resulted in higher levels of α9 as compared to control cells. Taken together, these observations suggest a relation between integrin α9β1 expression and proliferation in human intestinal cells. J. Cell. Biochem. 71:536-545, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 220
    ISSN: 0730-2312
    Keywords: matrix metalloproteinase ; sea urchin ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have purified and characterized a collagenase/gelatinase activity expressed during sea urchin embryonic development. The native molecular mass was determined to be 160 kDa, while gelatin substrate gel zymography revealed an active species of 41 kDa, suggesting that the native enzyme is a tetramer of active subunits. Incubation in the presence of EGTA resulted in nearly complete loss of activity and this effect could be reversed by calcium. Calcium-induced reactivation appeared to be cooperative and occurred with an apparent kd value of 3.7 mM. Two modes of calcium binding to the 41-kDa subunit were detected; up to 80 moles of calcium bound with a kd value of 0.5 mM, while an additional 120 moles bound with a kd value of 5 mM. Amino acid analysis revealed a carboxy plus carboxyamide content of 24.3 mol/100 mol, indicating the availability of substantial numbers of weak Ca2+-binding sites. Calcium binding did not result in either secondary or quaternary structural changes in the collagenase/gelatinase, suggesting that Ca2+ may facilitate activation through directly mediating the binding of substrate to the enzyme. The collagenase/gelatinase activity was detected in blastocoelic fluid and in the hyalin fraction dissociated from 1-h-old embryos. Immunolocalization studies revealed two storage compartments in the egg; cortical granules and small granules/vesicles dispersed throughout the cytoplasm. After fertilization, the antigen was detected in both the apical and basal extracellular matrices, the hyaline layer, and basal lamina, respectively. J. Cell. Biochem. 71:546-558, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 221
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 559-568 
    ISSN: 0730-2312
    Keywords: plasma cell ; CD19 ; CD38 ; naphthol AS-D chloroacetate esterase ; B cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study demonstrates that the multiple myeloma cell (MMC) in its plasma cell form is morphologically indistinguishable from human osteoclast-like cells that form in culture when peripheral blood mononuclear cells (PBMCs) are plated at high density in serum containing medium. MM has been described as a disease of B-cell lineage, monoclonal immunoglobulin (Ig) producing cells with unique properties: MM precursor cells lodge in bone, where they proliferate and differentiate into plasma cell tumors. Then, by some mechanism, presumably involving cytokines, these cells mediate an increase in neighboring osteoclast numbers and activity, leading to excessive bone erosion and hypercalcemia. Three days after plating PBMCs, tartrate resistant acid phosphatase- (TRAP-) blasts as well as TRAP+ cells, each with an eccentric nucleus, appear in culture. By day 10, TRAP+, vitronectin+ (VR+) cells, appear to be morphologically indistinguishable from multiple myeloma plasma cells (MMPCs) on cytocentrifuge preparations. These cells are CD19- and CD38++, as are MMCs reported by others. Other surface markers are also shared. Furthermore, Ig mRNA is demonstrated in the cytoplasm of cells at 8 days by in situ hybridization with the IgG FcA3 sequence. This novel finding is not unusual, in light of reports, demonstrating non-B-lineage Ig-producing cells. Thus, this study raises some serious questions about the true nature of MMCs. J. Cell. Biochem. 71:559-568, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 222
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 569-576 
    ISSN: 0730-2312
    Keywords: regucalcin ; calmodulin ; protein kinase ; calcium-binding protein ; liver nuclei ; regenerating rat liver ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10-4 M), or staurosporine (10-7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10-7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1-0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50-200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569-576, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 223
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. iv 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 224
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 577-583 
    ISSN: 0730-2312
    Keywords: hsp70 ; translation ; heat shock proteins ; stress response ; restimulation ; feedback inhibition ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To develop an alternative to hyperthermia for the induction of hsp70 for presurgical cytoprotection, we investigated the optimal exposure conditions for magnetic field induction of hsp70. Normal human breast cells (HTB124) were exposed to 60-Hz magnetic fields and hsp70 levels were measured following three different exposure conditions: continuous exposure up to 3 h, a single 20-min exposure, and a single 20-min exposure followed by repeated 20-min exposures at different field strengths. In cells exposed continuously for 3 h, hsp70 levels peaked (46%) within 20 min and returned to control levels by 2 h. Following a single 20-min exposure, the return of hsp70 levels to control values extended to more than 3 h. When cells underwent a 20-min exposure followed by repeated 20-min exposures (restimulation) with different field strengths, additional increases in hsp70 levels were induced: 31% at 1 h, 41% at 2 h, and 30% at 3 h. J. Cell. Biochem. 71:577-583, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 225
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 1-7 
    ISSN: 0730-2312
    Keywords: S phase ; DNA replication ; gene replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Events in the S phase of the cell cycle have been investigated to a relatively limited extent in comparison with those in G1 and M phases. Four aspects of S are briefly discussed in this report: (1) the final biochemical step permitting initiation of DNA synthesis, (2) determination of replication timing of individual genes and its mechanism, (3) S phase processes that lead to the onset of M phase, and (4) resetting the S-phase machinery. J. Cell. Biochem. Suppls. 30/31:1-7, 1998. © 1999 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 226
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 18-29 
    ISSN: 0730-2312
    Keywords: mammalian DNA replication fork ; DNA synthesome ; PCNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The process of DNA replication in mammalian cells is highly complex and has several unique features that distinguish it from simpler prokaryotic systems. The study of mammalian DNA replication lagged behind that of prokaryotes for many years. This was because of the lack of a reliable and efficient mammalian cell-based in vitro DNA replication system. In 1984, the first mammalian-based DNA replication system that initiated DNA synthesis successfully in vitro was developed. The employment of the mammalian in vitro DNA replication system has led to the identification of several DNA replication proteins. This article describes the current knowledge regarding the proteins mediating mammalian DNA replication, as well as how they are proposed to function during DNA synthesis. There is also a discussion of the role the mammalian cell nuclear architecture plays in DNA replication. The evidence for the existence of an organized DNA replication machine in mammalian cells is also presented. J. Cell. Biochem. Suppls. 30/31:18-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 227
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 8-17 
    ISSN: 0730-2312
    Keywords: eukaryote ; DNA replication ; replication origin ; pre-replication complex ; initiation proteins ; origin recognition complex ; DNA unwinding ; nuclear structure ; chromatin structure ; DNA methylation ; animal development ; metazoa ; mammal ; frog ; fly ; yeast ; Xenopus ; Drosophila ; Sciara ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Our understanding of the process by which eukaryotes regulate initiation of DNA replication has made remarkable advances in the past few years, thanks in large part to the explosion of genetic and biochemical information on the budding yeast, Saccharomyces cerevisiae. At least three major concepts have emerged: 1) The sequence of molecular events that determines when replication begins and how frequently each replication site is used are conserved among most, if not all, eukaryotes; 2) specific replication origins are used in most, if not all, eukaryotes that consist of a flexible modular anatomy; and 3) epigenetic factors such as chromatin structure and nuclear organization determine which of many potential replication origins are used at different stages in animal development. Thus, the current state of our knowledge suggests a simple unifying concept - all eukaryotes utilize the same basic proteins and DNA sequences to initiate replication, but the metazoa can change both the number and locations of replication origins in response to the demands of animal development. J. Cell. Biochem. Suppls. 30/31:8-17, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 228
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 30-36 
    ISSN: 0730-2312
    Keywords: tumor suppressor family ; regulatory mechanisms ; retinoblastoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The intense investigation of the retinoblastoma “tumor suppressor family” members, pRb, pRb2/p130, and p107, has revealed impressive mechanisms evolved to safeguard development and homeostasis in higher eukaryotes. Members of the retinoblastoma family are involved in implementing and controlling three major aspects of cellular life: (1) proliferative growth, (2) differentiation, and (3) apoptosis. The activities of these proteins are highly regulated, enabling them to precisely establish control. The pRb protein is well understood in its regulatory abilities and is considered a classical tumor suppressor. The role of pRb2/p130 protein in growth suppression and its potential as a tumor suppressor have been established during the last few years. The p107 protein, structurally and functionally similar to, but yet distinctive from, pRb2/p130, is characterized at a more rudimentary level. In this report, we review the latest data on the retinoblastoma protein family and its web of regulatory mechanisms. J. Cell. Biochem. Suppls. 30/31:30-36, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 229
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 37-42 
    ISSN: 0730-2312
    Keywords: cyclin-dependent kinases ; cell growth ; genomic stability ; restriction point control ; tumorigenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 230
    ISSN: 0730-2312
    Keywords: alkaline phosphatase ; osteogenic induction ; pp60Src ; tyrosine phosphorylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cyclosporin A (CsA) induces osteoporosis but not through direct activation of osteoclasts. CsA also inhibits cell-mediated mineralization in marrow stromal cell culture, whereas the tyrphostin AG-1478 increases mineralization. These antagonistic effects on mineralization were used to discern molecules that underwent phosphorylation changes in association with their opposing effects on mineralization. In parallel, quantitative changes in Src protein were followed. Multiple dexamethasone (DEX)-stimulated stromal cell cultures were grown with and without a mineralization-inhibiting dose (0.1 μM) of CsA and were harvested on different days of DEX stimulation. Immunoblots of gel-fractionated cell extracts showed that the most noticeable changes in tyrosine phosphorylated proteins (TPP) were seen on day 8 of DEX stimulation. At least 15 TPP bands, mostly smaller than 53 kDa, were more prominent in CsA-treated cultures on day 8. Under CsA, Src protein quantity decreased on day 8, but its cleavage product (52/54 kDa) was sixfold more abundant then on day 7. Day 8 was chosen to test the effect of AG-1478 on the CsA-induced TPP changes. Dimethyl sulfoxide (DMSO) alone, the solvent of AG-1478, increased mineralization in CsA-treated versus CsA-untreated cultures and slightly decreased Src and its cleavage product. AG-1478 at 5 μM, in CsA cultures increased the specific alkaline phosphatase activity threefold, with a slight change in mineralization relative to controls grown with DMSO alone. This was accompanied by decreased intensity of several TPP bands smaller than 36 kDa. In contrast, treatment with 50 μM of AG-1478 increased the intensity of TPP bands at the same molecular size range. This high AG-1478 dose decreased cell counts selecting mineralizing cells. The results indicate that increased Src protein cleavage product on day 8 by CsA is associated with mineralization inhibition, which is opposed by DMSO and 50-μM AG-1478, thus antagonizing the effect of CsA on mineralization. Direct or indirect interaction between Src and TPP, antagonistically affected by CsA and AG-1478, is likely to underlay cellular control of mineralization. Changes in p19 and p29 intensity showed association with mineralization that was reflected by a significant direct and inverse correlation, respectively, with calcium precipitation per cell. J. Cell. Biochem. 71:116-126, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 231
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 158-168 
    ISSN: 0730-2312
    Keywords: glycosylation ; lysosomal targeting ; lysozyme ; monensin ; myeloperoxidase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role of the N-terminal sequence of myeloperoxidase in the intracellular targeting was examined by using glycosylated lysozyme as a reporter. A fusion protein was constructed in which the presequence residues -18 through -6 of the lysozyme moiety had been replaced by residues 1-158 of prepromyeloperoxidase. Expression of the fusion protein in Chinese hamster ovary cells demonstrated its partial secretion and partial intracellular retention. The latter was accompanied by trimming the myeloperoxidase prosequence off the lysozyme moiety. The rate of the retention of the lysozyme fusion protein was higher than that of glycosylated lysozyme that had been expressed in cells transfected with cDNA of glycosylated lysozyme. The retention was insensitive to NH4Cl. In the secreted protein, lysozyme contained predominantly complex oligosaccharides as demonstrated by a proteolytic fragmentation in vitro and resistance to endo-β-N-acetylglucosaminidase H. In contrast, when targeted to lysosomes, the lysozyme moiety of the fusion protein contained predominantly mannose-rich oligosaccharides. In baby hamster kidney cells, the trimming of the oligosaccharides in the lysozyme fragment was less vigorous, and a selective targeting of molecules bearing mannose-rich oligosaccharides to lysosomes was more apparent than in Chinese hamster ovary cells. In the presence of monensin, the formation of complex oligosaccharides in the fusion protein and its secretion were strongly inhibited, whereas the intracellular fragmentation was not. We suggest that the prosequence of myeloperoxidase participates in the intracellular routing of the precursor and that this routing operates on precursors bearing mannose-rich rather than terminally glycosylated oligosaccharides and diverts them from the secretory pathway at a site proximal to the monensin-sensitive compartment of the Golgi apparatus. J. Cell. Biochem. 71:158-168, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 232
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 92-102 
    ISSN: 0730-2312
    Keywords: osteopontin ; enhanced cell survival ; inhibition of apoptosis ; bone remodeling ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The cytokine and cell attachment protein osteopontin (OPN) is not necessary for the development and survival of mice in a clean animal facility. The primary role of OPN appears to be that of facilitating recovery of the organism after injury or infection, which generally causes an increase in its expression. It also is essential for some forms of bone remodeling. OPN stimulates cellular signaling pathways via various receptors found on most cell types and can encourage cell migration. OPN modulates immune and inflammatory responses and possibly negatively regulates Ras signaling pathways. Its apparent ability to enhance cell survival by inhibiting apoptosis may explain why the metastatic proficiency of tumor cells increases with increased OPN expression. J. Cell. Biochem. Suppls. 30/31:92-102, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 233
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 123-128 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A variety of oligosaccharide signals have been identified that function in the regulation of plant development, defense, and other interactions of plants with the environment. Some of these oligosaccharides are produced by various pathogens or symbionts, whereas others are synthesized by the plant itself. This mini-review summarizes our present state of information on these oligosaccharide signals and provides an overview of approaches being used to identify receptors for these signals and gain an understanding of the mechanism(s) by which these signals activate downstream events. Possible biotechnological applications of future work in this field are also considered. J. Cell. Biochem. Suppls. 30/31:123-128, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 234
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 140-148 
    ISSN: 0730-2312
    Keywords: calmodulin ; calcineurin ; protein phosphatase ; calcium-binding protein ; regucalcin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The regulatory effect of regucalcin on Ca2+/calmodulin-dependent phosphatase activity and the binding of regucalcin to calmodulin was investigated. Phosphatase activity toward phosphotyrosine, phosphoserine, and phosphothreonine in rat liver cytosol was significantly increased by the addition of Ca2+ (100 μM) and calmodulin (0.30 μM). Thess increases were clearly inhibited by the addition of regucalcin (0.50-1.0 μM) into the enzyme reaction mixture. The cytosolic phosphoamino acid phosphatase activity was significantly elevated by the presence of anti-regucalcin monoclonal antibody (0.2 μg/ml), suggesting that endogenous regucalcin in the cytosol has an inhibitory effect on the enzyme activity. This elevation was prevented by the addition of regucalcin (0.50 μM). Purified calcineurin phosphatase activity was significantly increased by the addition of calmodulin (0.12 μM) in the presence of Ca2+ (1 and 10 μM). This increase was completely inhibited by the presence of regucalcin (0.12 μM). The inhibitory effect of regucalcin was reversed by the addition of calmodulin with the higher concentration (0.36 μM). Regucalcin has been demonstrated to bind on calmodulin-agarose beads by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The present study demonstrates that regucalcin inhibits Ca2+/calmodulin-dependent protein phosphatase activity in rat liver cytosol, and that regucalcin can bind to calmodulin. J. Cell. Biochem. 71:140-148, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 235
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 169-181 
    ISSN: 0730-2312
    Keywords: intermediate filaments ; mitogen-activated protein ; kinase-activated protein kinase-2 ; vimentin ; okadaic acid ; phosphorylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Organization of intermediate filament, a major component of cytoskeleton, is regulated by protein phosphorylation/dephosphorylation, which is a dynamic process governed by a balance between the activities of involved protein kinases and phosphatases. Blocking dephosphorylation by protein phosphatase inhibitors such as okadaic acid (OA) leads to an apparent activation of protein kinase(s) and to genuine activation of phosphatase-regulated protein kinase(s). Treatment of 9L rat brain tumor cells with OA results in a drastically increased phosphorylation of vimentin, an intermediate filament protein. In-gel renaturing assays and in vitro kinase assays using vimentin as the exogenous substrate indicate that certain protein kinase(s) is activated in OA-treated cells. With specific protein kinase inhibitors, we show the possible involvement of the cdc2 kinase- and p38 mitogen-activated protein kinase (p38MAPK)-mediated pathways in this process. Subsequent in vitro assays demonstrate that vimentin may serve as an excellent substrate for MAPK-activated protein kinase-2 (MAPKAPK-2), the downstream effector of p38MAPK, and that MAPKAPK-2 is activated with OA treatment. Comparative analysis of tryptic phosphopeptide maps also indicates that corresponding phosphopeptides emerged in vimentin from OA-treated cells and were phosphorylated by MAPKAPK-2. Taken together, the results clearly demonstrate that MAPKAPK-2 may function as a vimentin kinase in vitro and in vivo. These findings shed new light on the possible involvement of the p38MAPK signaling cascade, via MAPKAPK-2, in the maintenance of integrity and possible physiological regulation of intermediate filaments. J. Cell. Biochem. 71:169-181, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 236
    ISSN: 0730-2312
    Keywords: human islets ; insulin release ; sulfonylurea receptors ; oral antidiabetic compounds ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Current information on pancreatic islet sulfonylurea receptors has been obtained with laboratory animal pancreatic β cells or stable β-cell lines. In the present study, we evaluated the properties of sulfonylurea receptors of human islets of Langherans, prepared by collagenase digestion and density-gradient purification. The binding characterisitics of labeled glibenclamide to pancreatic islet membrane preparations were analyzed, displacement studies with several oral hypoglycemic agents were performed, and these latter compounds were tested as for their insulinotropic action on intact human islets. [3H]glibenclamide saturable binding was shown to be linear at ≤0.25 mg/ml protein; it was both temperature and time dependent. Scatchard analysis of the equilibrium binding data at 25°C indicated the presence of a single class of saturable, high-affinity binding sites with a Kd value of 1.0 ± 0.07 nM and a Bmax value of 657 ± 48 fmol/mg of proteins. The displacement experiments showed the following rank order of potency of the oral hypoglycemic agents we tested: glibenclamide = glimepiride 〉 tolbutamide 〉 chlorpropamide ≫ metformin. This binding potency order was parallel with the insulinotropic potency of the evaluated compounds. J. Cell. Biochem. 71:182-188, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 237
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 204-215 
    ISSN: 0730-2312
    Keywords: osteoclast ; spectrin ; membrane skeleton ; bone ; bone resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The presence of spectrin was demonstrated in chick osteoclasts by Western blotting and light and electron microscopic immunolocalization. Additionally, screening of a chick osteoclast cDNA library revealed the presence of α-spectrin. Light microscope level immunocytochemical staining of osteoclasts in situ revealed spectrin staining throughout the cytoplasm with heavier staining found at the marrow-facing cell margin and around the nuclei. Confocal microscopy of isolated osteoclasts plated onto a glass substrate showed that spectrin encircled the organelle-rich cell center. Nuclei and cytoplasmic inclusions were also stained and the plasma membrane was stained in a nonuniform, patchy distribution corresponding to regions of apparent membrane ruffling. Ultracytochemical localization showed spectrin to be found at the plasma membrane and distributed throughout the cytoplasm with especially intense staining of the nuclear membrane and filaments within the nuclear compartment. J. Cell. Biochem. 71:204-215, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 238
    ISSN: 0730-2312
    Keywords: assembly of type I collagen ; COOH-terminal propeptide ; pesin-resistant heterotrimers ; disulfide bonds ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233-242, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 239
    ISSN: 0730-2312
    Keywords: lysyl oxidase ; cyclooxygenase-1 ; type I collagen α1 ; prostaglandin E2 ; prostaglandin E2 receptors ; cyclic AMP ; interleukin-1β ; transforming growth factor-β ; forskolin ; 11-deoxy PGE1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In a recent communication, we demonstrated that prostaglandin E2 (PGE2) lowers basal while it ablates interleukin-1β( (IL-1β) and transforming growth factor-β (TGFβ) upregulated lysyl oxidase (LO) mRNA levels. Correspondingly, PGE2 increases cyclooxygenase-1 (COX1) mRNA in diploid, human embryo lung fibroblasts (IMR90) [Roy et al., 1996]. We now report that these actions by PGE2 are routed through cAMP via the PGE2, EP2 receptor. Among the PGE2 receptor types, the IMR90 predominantly express the EP2 mRNA. These cells also express EP3 and EP4 mRNA at comparatively low levels. Northern blot analyses show that 11-deoxy PGE1, an EP2/EP4 agonist, emulates the action of PGE2. In a similar manner to PGE2, 11-deoxy PGE1 decreases basal and TGF-β induced type I collagen α1 (COL) mRNA, basal and IL-1β induced LO mRNA while it increases COX1 mRNA. Sulprostone, an EP3/EP1 agonist, has no effect on the expression of these three genes. Forskolin, an adenylate cyclase activator, acts in a very similar manner to PGE2or 11-deoxy PGE1. It suppresses both basal and TGF-β induced COL mRNA levels. Both PGE2 and 11-deoxy PGE1 increase cAMP to a level comparable with forskolin. The role of the EP2 receptor in controlling collagen production is further underscored in the immortalized Rat-1 fibroblasts, derived from Fischer rat embryos, which do not express detectable EP2 mRNA. In these cells, PGE2 has little effect on COL mRNA level, whereas forskolin increases it. Furthermore, forskolin increases cAMP level in Rat-1 cells, whereas PGE2 does not. Overall, these results illustrate that much of the PGE2 action on the expression of COL, LO, and COX1 genes is mediated through the EP2 receptor and a subsequent increase in intracellular cAMP. J. Cell. Biochem. 71:254-263, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 240
    ISSN: 0730-2312
    Keywords: Id ; cytokines ; hematopoiesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hematopoietic development is regulated by a complex mixture of cytokine growth factors that guide growth and differentiation of progenitor cell populations at different stages in their development. The genetic programs that drive this process are controlled at the molecular level by the type and number of transcriptional regulators coexpressed in the cell. Both positive- and negative-acting helix-loop-helix transcription factors are expressed during hematopoietic development, with the Id-type transdominant negative regulators controlling the net helix-loop-helix activation potential in the cell at any given time. It has been demonstrated that some of these Id factors are involved in the checkpoint at which undifferentiated progenitor cells make the commitment to terminal maturation. Therefore, we sought to determine whether these Id family factors are selectively induced or extinguished by cytokines that act at different points during hematopoiesis. NFS-60, a myeloid progenitor line that proliferates in response to multiple cytokines, was stimulated by treatment with SCF, IL-3, IL-6, G-CSF, and erythropoietin. Id-1 expression correlated tightly with cellular proliferation: it declined when growth factor stimulation was withdrawn and was quickly induced whenever the cell began to proliferate. The regulation of Id-2 was more complex: its expression was slightly upregulated in factor-deprived cells but only strongly reinduced after extended exposure to cytokines that drive granulocytic differentiation (IL-6, G-CSF, and TGFβ1). These data support a cell-cycle regulatory role for Id-1 in multipotent myeloid progenitor cells and a role for Id-2 during terminal granulocytic differentiation. J. Cell. Biochem. 71:277-285, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 241
    ISSN: 0730-2312
    Keywords: IGFBP ; cAMP ; PKA ; prostaglandin ; bone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351-362, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 242
    ISSN: 0730-2312
    Keywords: apoptosis ; necrosis ; phospholipases ; tumor necrosis factor ; Fas ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phospholipases generate important secondary messengers in several cellular processes, including cell death. Tumor necrosis factor (TNF) can induce two distinct modes of cell death, viz. necrosis and apoptosis. Here we demonstrate that phospholipase D (PLD) and cytosolic phospholipase A2 (cPLA2) are differentially activated during TNF-induced necrosis or apoptosis. Moreover, a comparative study using TNF and anti-Fas antibodies as cell death stimuli showed that PLD and cPLA2 are specifically activated by TNF. These results indicate that both the mode of cell death and the type of death stimulus determine the potential role of phospholipases as generators of secondary messengers. J. Cell. Biochem. 71:392-399, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 243
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 375-381 
    ISSN: 0730-2312
    Keywords: insulin-like growth factor-I ; insulin-like growth factor binding protein-5 ; smooth muscle cells ; atherosclerosis ; substratum ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Insulin-like growth factor binding protein-5 (IGFBP-5) is synthesized and secreted by smooth muscle cells (SMC). IGFBP-5 synthesis is stimulated five- to sixfold by IGF-I, and IGFBP-5 has been shown to augment IGF-I-stimulated DNA synthesis in this cell type. The ability of IGFBP-5 to augment the SMC response to IGF-I is dependent upon its binding to extracellular matrix. A highly charged region of IGFBP-5 that contains amino acids in positions 201-218 has been shown to mediate binding of IGFBP-5 to human fibroblast extracellular matrix (ECM), and a synthetic peptide containing this sequence inhibits IGFBP-5 binding to fibroblast ECM. In this study we show that exposure of SMC cultures that are constituitively synthesizing IGFBP-5 to a synthetic peptide (termed peptide A) containing this sequence has no effect on its synthesis but reduces its abundance within the ECM. The addition of increasing concentrations of the peptide to SMC cultures resulted in a concentration-dependent reduction in ECM-associated IGFBP-5. In contrast, a control peptide (peptide B), which contained the region of amino acids in positions 131-141 and had a similar charge-to-mass ratio, caused a minimal decrease in ECM binding. This effect was functionally significant since the addition of 10 μg/ ml of peptide A inhibited the cellular replication response to 10 ng/ ml IGF-I by 51%, and peptide B had no effect. The effects of peptide A were not due to nonspecific cytotoxicity since it had no inhibitory effect on the response of these cells to human serum and was associated with only minimal inhibition of the cellular response to platelet-derived growth factor. The findings suggest that inhibiting IGFBP-5 binding to porcine SMC ECM results in reduced cellular responses to IGF-I. J. Cell. Biochem. 71:375-381, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 244
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 382-391 
    ISSN: 0730-2312
    Keywords: dexamethasone ; bone marrow cell cultures ; IGF-I ; vertebrae ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoblast-like cell cultures have been established from the marrow of adult rat vertebrae. We have simultaneously examined the response to dexamethasone (dex) treatment in cultures of young adult female vertebral and femoral marrow cells. Alkaline phosphatase (AP) activity was analyzed as well as the expression of mRNAs for osteocalcin (OC) and insulin-like growth factor I (IGF-I). The vertebral and femoral marrow cells were maintained for 7 days in primary culture with or without 10-8 M dex and then 6 days in secondary culture without dex or with 10-8 M or 10-7 M dex. All cells were examined on day 6 of secondary culture. Vertebral and femoral cultures each expressed the highest AP enzyme levels when grown with dex in primary culture (10-8 M) and secondary culture (10-7 M). Under all experimental conditions, vertebral cultures had lower AP enzyme activity than femoral cultures. When dex was omitted from secondary culture, OC gene expression was not detected in either vertebral or femoral passaged cells even if dex was present in primary culture. For dex conditions where OC was expressed, vertebral cultures had higher OC mRNA steady-state levels than femoral cultures. IGF-I gene expression was detected by Northern analysis in both vertebral and femoral secondary cultures. However, vertebral marrow cultures had much higher IGF-I mRNA levels compared to femoral cultures whether or not dex was present in primary culture. These findings demonstrate that dex supports the differentiation of both vertebral and femoral adult marrow osteogenic cells into osteoblasts. Our results support the hypothesis that osteoblastic marrow cultures differ depending upon which location in the skeleton they are from and that there are skeletal site-dependent differences in the insulin-like growth factor system components. J. Cell. Biochem. 71:382-391, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 245
    ISSN: 0730-2312
    Keywords: Ishikawa cells ; endometrium ; biotin ; multinucleated cells ; predomes ; domes ; pinopods ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human Ishikawa endometrial cells form domes when confluent monolayers are stimulated with fresh fetal bovine serum. Extensive structural and biochemical changes have been detected during the approximately 30 h differentiation period. The earliest detectable change involves the formation of multinucleated structures and the appearance of “granules” that stain for biotin within those structures. Nuclei become associated with each other and are ultimately enclosed within a biotin-containing membrane. Aggregated membrane-sheathed nuclei and the cells containing them begin to elevate from the dish as biotin staining becomes apparent in apical membranes. The elevated structures are called predomes and consist of one or more very large cells containing the sheathed nuclei. Apical membranes of these unusual cells extend far out into the medium in structures that resemble endometrial pinopods. A lumen under the elevated cells fills with transcytosed fluid. As differentiation proceeds, highly concentrated chromatin material that was flattened against apical and lateral membranes of the predome cells begins to disperse. Small mononuclear cells evolve from larger predome cells. Apical membranes of predome and dome cells continue to stain for biotin. Gel electrophoresis of SDS-solubilized biotin-containing membranes, followed by Western blot analysis using avidin-linked peroxidase, resulted in three stained bands with molecular weights similar to those of the mitochondrial carboxylases: propionyl carboxylase, methylmalonyl carboxylase, and pyruvate carboxylase. J. Cell. Biochem. 71:400-415, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 246
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 73-82 
    ISSN: 0730-2312
    Keywords: osteoblast ; bone ; stem cells ; osteoprogenitor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoblasts are the skeletal cells responsible for synthesis, deposition, and mineralization of the extracellular matrix of bone. By mechanisms that are only beginning to be understood, stem and primitive osteoprogenitors and related mesenchymal precursors arise in the embryo and at least some appear to persist in the adult organism, where they contribute to replacement of osteoblasts in bone turnover and in fracture healing. In this paper, the nature of these cells, whether they constitute a stem cell pool or a committed progenitor pool, and aspects of their apparent plasticity are discussed. Current understanding of differential expression of osteoblast-associated genes during osteoprogenitor proliferation and differentiation to mature matrix synthesizing osteoblasts is summarized. Finally, evidence is discussed that supports the hypothesis that the mature osteoblast phenotype is heterogeneous with subpopulations of osteoblasts expressing only subsets of the known osteoblast markers, raising also the possibility of multiple parallel differentiation pathways and perhaps even different progenitor pools. J. Cell. Biochem. Suppls. 30/31:73-82, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 247
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 377-386 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Apoptosis in cells of different lineages is restrained by survival signals which depend upon cell-to-cell communication. The aim of this study was to determine whether colonic cells deprived of crypt ambient are doomed to die prior to their normal chronological demise. Apoptosis was studied in rat whole colonic tissue, in isolated intact crypts, and in colonic cell populations collected from the crypt axis at different stages of proliferation and differentiation. In a number of experiments, cell harvest was performed in the presence of either a tetrapeptide (YVAD-CMK) inhibitor of interleukin-1β-converting enzyme (ICE), or tyrphostin A25, a protein tyrosine kinase inhibitor, or sodium-orthovanadate, a phosphatase inhibitor. DNA fragmentation was assessed by electrophoretic and nonisotopic-labeling procedures. The ultrastructure of colonic tissue specimens and isolated cells was examined by transmission electron microscopy. Apoptosis in whole colonic tissue and in isolated crypts was confined predominantly to cells resident in the upper crypt regions. In contrast, extensive apoptotic death was observed in isolated colonic cells, irrespective of their developmental stage and positional hierarchy within the crypt continuum at harvest time. An apoptotic gradient, however, was evident. Exposure to YVAD-CMK resulted in a marked decrease in the number of apoptotic cells. Treatment with tyrphostin A25 caused a sharp rise in the apoptotic index; conversely, vanadate significantly impeded apoptosis. Cumulatively, these results indicate that disordered intercellular communication provokes unscheduled ICE-mediated apoptosis of colonocytes, and that local signals along the crypt continuum control both the reprieve from death and the timely demise of distinct colonic cell populations. Attenuation of tyrosine phosphorylation may be a contributory event in the acquisition of the apoptotic phenotype. J. Cell. Physiol. 177:377-386, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 248
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 518-524 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 249
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 507-517 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Neuropeptides, including mammalian bombesin-like peptides, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. These signaling peptides exert their characteristic effects on cellular processes by binding to specific G protein-coupled receptors (GPCR) on the surface of their target cells. Typically, the binding of a neuropeptide to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades is an important early response to neuropeptides. An emerging theme in signal transduction is that these agonists also induce rapid and coordinate tyrosine phosphorylation of cellular proteins including the nonreceptor tyrosine kinase p125fak and the adaptor proteins p130cas and paxillin. This tyrosine phosphorylation pathway depends on the integrity of the actin cytoskeleton and requires functional Rho. The purpose of this article is to review recent advances in unraveling the pathways that play a role in transducing mitogenic and migratory responses induced by G protein-coupled neuropeptide receptor agonists. J Cell Physiol 177:507-517, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 250
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 525-534 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 251
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 493-498 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Ultraviolet light A (UVA) is shown to play an augmentative or synergistic role with UVB in pathophysiological conditions induced by solar radiation. Thus, UVA would contribute significantly to the development of skin malignancies. It remains unclear, however, how UVA contributes to solar radiation-induced immune suppression. Keratinocytes (KC) produce cytokines which are a significant mediator of inflammatory and immunologic reactions in skin exposed to solar radiation and are a potent mediator in the induction of immune suppression. To examine if UVA alters the expression and production of cytokines from KC, normal human keratinocytes (HuSK) were cultured and exposed to UVA at doses ranging between 2.5 and 20 kJ/m2. Constitutive expression of the p35 subunit of interleukin (IL)-12 was detected by reverse transcription-polymerase chain reaction (RT-PCR) and the p40 subunit was induced by UVA irradiation dose dependently. IL-12 protein was also detected in the supernatants from UVA-irradiated HuSK by enzyme-linked imuunosorbent assay (ELISA) and confirmed by a bioassay. On the other hand, the same doses of UVA did not induce IL-10 mRNA or IL-10 protein which has been shown to be one of the cytokines responsible for the induction of UVB-induced immunosuppression. Considering that IL-12 promotes activation of Th1 cells and prevents the activation of Th2 cells and that administration of IL-12 has been shown to block the induction of immune suppression in UV-irradiated animals, our results suggest that UVA modulates skin immune function distinctively from UVB by affecting the balance between IL-10 and IL-12 produced from KC. J. Cell. Physiol. 177:493-498, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 252
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 535-552 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The viral Crk oncogene (v-Crk) is known to induce sarcomas in chicken and its cellular homologs c-Crk I, c-Crk II, and Crk-like (CRKL) have been implicated in many signal transduction events. These include cell differentiation, cell migration, and the induced nonresponsiveness of T-cells to stimulation of the T-cell receptor (TCR), a state known as anergy. CRKL is also the most prominent substrate of the Bcr-Abl oncoprotein which causes human chronic myelogenous leukemias (CML). The modular composition of the Crk family adapters which largely consist of Src homology (SH2 and SH3) domains has prompted an intensive search for physiological and pathological upstream and downstream signalling partners which selectively bind to these adapters. Upstream proteins include various receptors and large multisite docking proteins, while several protein kinases and guanine nucleotide release proteins (GNRPs) have been suggested to function downstream of c-Crk and CRKL. Most Crk/CRKL SH2- and SH3-binding proteins contain several docking sites with considerable sequence similarity. Thus the binding requirements of Crk/CRKL SH2 and SH3 domains are now well defined, providing a basis for the design of small inhibitory molecules to block the function of these adapter proteins. The enzymatic cascades activated through Crk family adapters are only partially known, but stress kinases (SAPKs/JNKs) and the GTPase Rap1, as well as the B-Raf isoform of the Raf protein kinases, are affected in some systems. Several yet unidentified, highly selective Crk interacting proteins detectable in specific cell types remain to be studied. More detailed analyses of the enzymatic activities triggered through Crk-type adapters will also be crucial to fully define the signalling pathways controlled by this protein family. J Cell Physiol 177:535-552, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 253
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Hepatocytes entrapped in collagen gel and cultured in serum-free conditions survived longer than cells cultured on plastic (5 days vs. 3 weeks), showed fewer signs of early cell senescence (no increase in c-fos oncoprotein expression), and maintained the expression of differentiated hepatic metabolic functions over a longer period of time. Cells cultured in collagen gels retained their ability to respond to hormones. The insulin-stimulated glycogen synthesis rate remained fairly constant during 18 days in culture (between 5.4 ± 0.37 and 9 ± 2.7 nmol glucose/h/μg DNA). Collagen-cultured hepatocytes recovered glycogen stores to levels similar to those found in liver, or in hepatocytes isolated from fed rats. Urea synthesis from ammonia remained stable for more than 2 weeks (average value, 23 ± 4 nmol urea/h/μg DNA). The rate of albumin synthesis in collagen-entrapped cells was maintained above the day-1 level during 18 days in culture. Cells showed high levels of glutathione (GSH) (1,278 ± 152 pmol/μg DNA). Biotransformation activities CYP4501A1, CYP4502A2, CYP4502B1, and CYP4503A1 remained fairly stable in collagen-cultured hepatocytes. CYP4502E1 and CYP4502C11 decreased but were still measurable after 18 days. After 4 days in culture, GST activity returned to levels observed in isolated hepatocytes. In contrast with plastic cultures, cells responded to CYP450 inducers (methylcholanthrene for CYP4501A1, CYP4501A2, and gluthatione-transferase, and ethanol for CYP4502E1) for more than 2 weeks. CYP4501A1, CYP4501A2, and glutathione-transferase A2 (GST A2) induction was preceded by an increase in specific mRNA, while the effects on CYP4502E1 seemed to be at a posttranslational level. Analysis of the expression of relevant hepatic genes by reverse Northern and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that culturing hepatocytes in collagen gels results in a sustained higher expression of key liver transcription factor genes DBP, C/EBP-α and -β, and HNF-1 and -4, as well as specific liver enzyme genes (phosphoenol pyryvate carboxykinase, and carbamoylphosphate-synthetase I). J Cell Physiol 177:553-562, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 254
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space. J Cell Physiol 177:563-574, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 255
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 585-592 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The effect of metabolic inhibitors on nontransferrin bound iron transport by K562 cells was investigated. Incubation with 1 μM rotenone, 10 μM antimycin, or 0.5 mM 2,4-dinitrophenol effectively reduced ATP levels by ∼50%. Both the rate and extent of Fe+3 uptake were impaired in ATP-depleted cells, which display a reduced Vmax for uptake. K562 cell ferrireductase activity was also lowered by metabolic inhibitors, suggesting that the apparent energy requirements for transport reside in the reduction of Fe+3 to Fe+2. However, ATP depletion was found to inhibit the rate and extent of Fe+2 uptake as well. Thus, the transbilayer passage of Fe+2 and/or Fe+3 appears to be an energy-requiring process. These features possibly reflect properties of the transport mechanism associated with a recently identified K562 cell transport protein, called SFT for “Stimulator of Fe Transport,” since exogenous expression of its activity is also affected by ATP depletion. J Cell Physiol 177:585-592, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 256
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 593-605 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Clusterin (ApoJ) is an extracellular glycoprotein expressed during processes of tissue differentiation and regression that involve programmed cell death (apoptosis). Increased clusterin expression has also been found in tumors, however, the mechanism underlying this induction is not known. Apoptotic processes in tumors could be responsible for clusterin gene activation. Alternatively, oncogenic mutations could modulate signal transduction, thereby inducing the gene. We examined the response of the rat clusterin gene to two oncogenes, Ha-ras and c-myc, in transfected Rat1 fibroblasts. While c-myc overexpression did not modify clusterin gene activity, the Ha-ras oncogene produced a seven to tenfold repression of clusterin mRNA; this down-regulation was also observed in the presence of c-myc. Since no induction of the clusterin gene was observed by the two oncogenes, we tested the alternative mechanism involving apoptosis. Growth factor withdrawal induced apoptosis, as shown by DNA degradation and micronuclei formation in the floating cells. Concomittantly we observed a three to tenfold increase in the amount of clusterin mRNA in the adhering cells of Rat1 and the c-myc transformed cell lines, and a weaker induction in the Ha-ras transformed cell line. On the basis of our results, we suggest that clusterin gene induction in the vital cells is produced by signaling molecules that are generated by the apoptotic cells. We conclude that apoptotic processes, not oncogenic mutations, are responsible for increased clusterin expression in tumors. J Cell Physiol 177:593-605, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 257
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 575-584 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of hsp27 as an inhibitor of actin polymerization was considered in the context of the actin cytoskeleton and its relationship with focal adhesion formation. The aim of this study was to evaluate the potential effects of hsp27 on focal adhesion formation as a relevant biological consequence of actin stress fiber formation. When hsp27 was overexpressed in stably transfected cells, cell attachment was delayed and recovery of disrupted stress fibers and focal adhesions was limited. In ROS 17/2.8 cells, heat shock caused the reversible disruption of stress fibers and focal adhesions. The loss of stress fibers and focal adhesions was associated with reduced phosphotyrosine on the focal adhesion kinase (FAK). Microinjection of recombinant 6-His hsp27 and phosphorylated 6-His hsp27 was used to demonstrate that nonphosphorylated hsp27 prevented the recovery of stress fibers and focal adhesions. These results provide in vivo evidence that hsp27 acts as an inhibitor of actin polymerization that can alter cellular interactions with extracellular environments by perturbation of stress fibers, and subsequently focal adhesions. J Cell Physiol 177:575-584, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 258
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 618-627 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with down-regulation of fibronectin (FN) and laminin (LN), two extracellular matrix components interacting with cell surface integrin receptors. We now investigated whether Caco-2 cell differentiation was associated with alterations in integrin signaling with special interest in the expression and activity of focal adhesion kinase (FAK) and mitogen-activated protein (MAP) kinase. The differentiation of Caco-2 cells was associated with: (1) down-regulation of β1 integrin expression at the mRNA and protein levels; (2) increased FAK expression together with decreased FAK autophosphorylation; (3) decreased FAK's ability to associate with PI3-kinase and pp60c-src; and (4) increased MAP kinase expression along with decreased MAP activity. In addition, we show that FAK and MAP kinase belong to distinct integrin signaling pathways and that both pathways remain functional during Caco-2 cell differentiation since the coating of differentiating cells on FN and LN but not on polylysine increased the tyrosine phosphorylation of FAK and of its endogenous substrate paxillin, and stimulated MAP kinase activity. In conclusion, our results provide evidence that FAK and MAP kinase, two signaling molecules activated independently by β1 integrins in Caco-2 cells, undergo alterations of both expression and activity during the enterocytic differentiation of this cell line. J Cell Physiol 177:618-627, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 259
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of HSP27 in cell growth and resistance to stress was investigated using murine fibrosarcoma L929 cells (normally devoid of constitutively expressed small HSPs) and human osteoblast-like SaOS-2 cells stably transfected with a human hsp27 expression vector. Our data showed that our L929 cells were more resistant to oxidative stress than generally observed for this line. Production of HSP27 in these cells led to a marked decrease in growth rate associated with a series of phenotypical changes, including cell spreading, cellular and nuclear hypertrophy, development of an irregular outline, and a tremendous accumulation of actin stress fibers. By contrast, none of these changes was observable in SaOS-2/hsp27 transfectants overexpressing the protein product. Together, these observations are consistent with a cause-to-effect cascade relationship between increased (or induced) HSP27 expression, changes in cytoskeletal organization, and decreased growth. On the other hand, whereas the transfection of the hsp27 gene increased the cell resistance to heat in both cell lines, only in SaOS-2 cells was this associated with protection to the cytotoxic action of tumor necrosis factor-alpha (TNF-α) and etoposide. Unexpectedly, L929/hsp27 transfectants exhibited an increased sensitivity to both agents and also to H2O2. These data thus imply that different mechanisms are involved in the cell resistance to heat shock and to the cytotoxic action of TNF-α, etoposide, and H2O2. They also plead against the simple view that overexpression of a phosphorylatable HSP27 would necessarily be beneficial in terms of increased cell resistance to any type of stress. Our data further indicate that the role of HSP27 in cellular resistance to stress and in cell proliferation involves different targets and that the ultimate result of its interference with these processes depends on the intracellular context in which the protein is expressed. J Cell Physiol 177:606-617, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 260
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Salivary glands contain two major epithelial cell types: acinar cells which produce the primary salivary secretion, including amylase, and ductal cells which reabsorb electrolytes but also secrete kallikrein. Here we investigated salivary acinar cell differentiation in vitro using the activity of the salivary amylase and tissue kallikrein promoters as markers of acinar cell and ductal cell differentiation, respectively. Each of the promoter sequences was cloned into a replication-deficient adenoviral vector containing the luciferase reporter gene. Previous studies showed that a human submandibular gland cell line (HSG) differentiated into acinar cells when cultured on a reconstituted basement membrane matrix (Matrigel). The luciferase activity of the amylase promoter vector (AdAMY-luc) was low in HSG cells cultured on plastic, where they grow as an epithelial monolayer. The promoter activity increased approximately tenfold when HSG cells were cultured on Matrigel and developed an acinar phenotype. Under the same conditions, the luciferase activity of the kallikrein promoter (AdKALL-luc) was not induced. Because HSG cells demonstrate acinar cell morphology, but not amylase gene expression, when cultured on laminin-1, certain soluble components of Matrigel were tested for their ability to induce the amylase promoter during in vitro differentiation of acinar cells. We find that epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α), which are present in the basement membrane, and hepatocyte growth factor (HGF) increase activity of the amylase promoter. Other basement membrane-derived growth factors such as TGF-β, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PGDF), as well as tumor necrosis factor (TNF-α), keratinocyte growth factor (KGH), nerve growth factor (NGF) and interferon gamma (IFN-γ) were inactive. This system will be further exploited to study the mechanisms by which extracellular matrix molecules and growth factors regulate salivary acinar cell differentiation. J Cell Physiol 177:628-635, 1998. Published 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 261
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Using an expression cloning approach, we identified and cloned a novel intracellular protein produced by osteoclasts that indirectly induces osteoclast formation and bone resorption, termed OSF. Conditioned media from 293 cells transiently transfected with the 0.9 kb OSF cDNA clone stimulated osteoclast-like cell formation in both human and murine marrow cultures in the presence or absence 10-9 M 1,25-dihydroxyvitamin D3. In addition, conditioned media from 293 cells transfected with the OSF cDNA clone enhanced the stimulatory effects of 1,25-(OH)2D3 on bone resorption in the fetal rat long bone assay. In situ hybridization studies using antisense oligomers showed expression of OSF mRNA in highly purified osteoclast-like cells from human giant cell tumors of the bone. Northern blot analysis demonstrated ubiquitous expression of a 1.3 kb mRNA that encodes OSF in multiple human tissues. Sequence analysis showed the OSF cDNA encoded a 28 kD peptide that contains a c-Src homology 3 domain (SH3) and ankyrin repeats, suggesting that it was not a secreted protein, but that it was potentially involved in cell signaling. Consistent with these data, immunoblot analysis using rabbit antisera against recombinant OSF demonstrated OSF expression in cell lysates but not in the culture media. Furthermore, recombinant OSF had a high affinity for c-Src, an important regulator of osteoclast activity. Taken together, these data suggest that OSF is a novel intracellular protein that indirectly enhances osteoclast formation and osteoclastic bone resorption through the cellular signal transduction cascade, possibly through its interactions with c-Src or other Src-related proteins. J Cell Physiol 177:636-645, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 262
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The pentameric B subunit of verotoxin (VT) mediates the attachment to cell surface globotriaosyl ceramide (Gb3) to facilitate receptor-mediated endocytosis of the toxin. In highly toxin-sensitive tumor cells, the holotoxin and VT1 B subunit is targeted intracellularly to elements of the endoplasmic reticulum (ER)/nuclear membrane. In less sensitive cells, the toxin is targeted to components of the Golgi apparatus. We have studied two cell systems: the induced VT hypersensitivity of human astrocytoma cell lines cultured in the presence of sodium butyrate (compared to sodium propionate and capronate) and the increased VT sensitivity of multiple drug-resistant mutants as compared to parental human ovarian carcinoma cells. In both cases, a difference in the intracellular retrograde transport of the receptor-bound internalized toxin to the ER/nuclear envelope, as opposed to the Golgi, correlated with a 〉1,000-fold increase in cell sensitivity to VT. This change in intracellular routing may be due to sorting of Gb3 fatty acid isoforms, since nuclear targeting was found in turn to correlate with the preferential synthesis of Gb3 containing shorter chain (primarily C16) fatty acid species. We propose that the isoform-dependent traffic of Gb3 from the cell surface to the ER/nuclear membrane provides a new signal transduction pathway for Gb3 binding proteins. J Cell Physiol 177:646-660, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 263
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The addition of dexamethasone (dex) to human fibroblast cultures has been found to elicit enhanced proliferation. This enhancement is manifested by an increase in the initial growth rate, saturation density, and proliferative life span of WI-38 fibroblast cultures grown in the presence of dex. We examined the acute effects of dex on a number of growth-related genes in WI-38 cells. Our results show a decrease in the level of the cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 in response to dex. In addition, the level of the insulin-like growth factor type 1 receptor (IGF-1R) is increased in dex-treated cells. These changes are correlated with changes in the activity of the p21Waf1/Cip1/Sdi1 and IGF-1R promoters. The results presented in this report suggest that dex may delay growth arrest in response to contact inhibition, as well as during cellular senescence. Thus, dex may act at multiple levels to enhance cellular proliferation in WI-38 cells: first, to decrease the level of an inhibitor of cell-cycle progression, and second, to increase the sensitivity of WI-38 cells to the proliferative effects of IGF-1. These acute effects may cooperate with other, as yet uncharacterized effects, to result in the enhanced proliferation seen in the presence of dex. J. Cell. Physiol. 177:396-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 264
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 387-395 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previously, we reported that unaggressive, growth factor-dependent FET human colon carcinoma cells downregulated their transforming growth factor alpha (TGFα) expression in a quiescent state (G0/G1) induced by growth factor and nutrient deprivation (Mulder, 1991, Cancer Res., 51:2256-2262). In contrast, highly aggressive, growth factor-independent HCT116 human colon carcinoma cells aberrantly upregulated this autocrine activity in the quiescent state (Mulder, 1991, Cancer Res., 51:2256-2262; Howell et al., 1998, Mol. Cell. Biol., 18:303-313). In this report, the role of autocrine TGFα and the mechanism of its regulation of expression during reentry into the cell cycle from a noncycling growth state were determined in FET cells. Optimal induction of DNA synthesis from a quiescent state in FET cells is dependent upon autocrine TGFα as well as exogenous transferrin and insulin. Reentry into the cell cycle resulting from treatment with exogenous transferrin and insulin resulted in ∼3-fold induction of TGFα expression within 1 hr. TGFα induction was controlled at the transcription level, and the cis-controlling element was localized to the region between bp -370--201 relative to the translation start codon within the TGFα promoter. Thus neutralization of autocrine TGFα protein revealed that the induced TGFα autocrine activity was necessary for DNA synthesis and acted only in the early G1 phase of the cell cycle. Blockade of autocrine TGFα expression early in the cell cycle resulted in the reduction of DNA synthesis, whereas treatment with neutralization antibody at later times had no effect. This suggested that autocrine TGFα functions to initiate cell growth from noncycling states. This was further confirmed by the dependence of FET cells upon autocrine TGFα for colony formation in experiments where the plating density was sufficiently low to generate a lag phase in tissue culture. In contrast, TGFα autocrine activity was not required for exponential phase cells, as evidenced by the failure of TGFα neutralizing antibody to inhibit proliferation in this growth state. Taken together, these results suggest that autocrine TGFα acts primarily in the process of growth initiation by moving cells from a noncycling state back into the cell cycle, rather than supporting cell growth already initiated. J. Cell. Physiol. 177:387-395, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 265
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 402-410 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Potassium (K+) conductances are known to be involved in cell proliferation of a number of nonexcitable cell types. The nature of the mechanism by which K+ channel inhibition reduces cell proliferation has remained elusive despite intensive search. We investigated whether such a phenomenon could be demonstrated in excitable cells, using the GH3 pituitary cell line as a cell model. Our aims were: (1) to study the effect of K+ channel inhibition on the proliferation of GH3 cells; and (2) to investigate the putative intracellular signals involved in this inhibition. Tetraethylammonium chloride (TEA), a blocker of the calcium (Ca2+)-dependent K+ conductances of GH3, was found to reversibly inhibit cell proliferation, as measured by 3H-thymidine incorporation. Cell cycle block specifically occurred at the G1/S phase of the cell cycle. This inhibition of proliferation was observed for 1-4 mM TEA, which suppressed most of the Ca2+-activated K+ current and part of the inward rectifying K+ current, as shown by electrophysiological experiments. Increasing extracellular K+ concentrations with KCl also inhibited cell proliferation in a dose-dependent manner. Both TEA and KCl depolarized the cells and increased intracellular Ca2+ levels ([Ca2+]i), showing that, in this type of excitable cell, inhibition of cell proliferation can be associated with elevated Ca2+ levels. Ca2+ and membrane resting potential (MRP) were considered as possible messengers of this inhibition. Our results suggest that cell cycle arrest of GH3 cells by K+ channel block probably involves an additional pathway, distinct from those of Ca2+ and MRP. J. Cell. Physiol. 177:402-410, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 266
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Basic fibroblast growth factor (bFGF, FGF-2) is progressively lost from mammary epithelial cells as they become malignant. To investigate the effects of restoring the expression of bFGF in breast cancer cells, we constructed MCF-7 cells that permanently overexpress 18-kD cytoplasm-localizing bFGF (MCF-7/ΔAFGF(18) cells) and cells that express both the 18-kD along with the 22- and 24-kD nucleus-localizing bFGF peptides (MCF-7/NCFFGF(18,22,24) cells), using retroviral transduction. These stable cell constructs grew more slowly and had a larger fraction of their populations in the G0/G1 phase of the cell cycle than control cells. All forms of bFGF were eluted from MCF-7/NCFFGF(18,22,24) cell monolayers with 2 M NaCl, in contrast to fibroblasts that were demonstrated to secrete only the 18-kD bFGF isoform. High-affinity binding of 18-kD 125I-bFGF to these cells was significantly decreased, probably because of competitive binding by the autocrine-secreted bFGF. Recombinant 18-kD bFGF that was previously demonstrated in our laboratory to inhibit proliferation, activate MAP kinase, and induce the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in MCF-7 cells, further inhibited MCF-7/ΔAFGF(18) cells but had no effect on MCF-7/NCFFGF(18,22,24) cells. The total cellular content of the high-affinity FGF receptors 1-3 was unchanged, but FGF receptor 4 was decreased in MCF-7/NCFFGF(18,22,24) cells. Both cell types overexpressing bFGF isoforms had elevated levels of the cyclin-dependent kinase inhibitor p27Kip1 but not that of p21WAF1/CIP1. In MCF-7/ΔAFGF(18) cells, FGFR1 and MAP kinase were constitutively phosphorylated. Exogenous recombinant 18-kD bFGF did not accentuate these effects but did induce an increase in the levels of p21WAF1/CIP1 corresponding to the further inhibition induced by exogenous bFGF in these cells. In MCF-7/NCFFGF(18,22,24) cells, FGFR1 and MAP kinase were not phosphorylated at baseline nor upon stimulation with recombinant bFGF, and exogenous bFGF only had a minimal effect on low steady-state p21WAF1/CIP1 levels. However, stimulation of these cells with phorbol ester or insulin did result in MAP kinase phosphorylation. While growth-inhibited in the G1 phase of the cell cycle, MCF-7/NCFFGF(18,22,24) cells retained active isoforms of cdk2 and the hyperphosphorylated form of Rb. These data suggest that high molecular weight forms of bFGF overexpressed in MCF-7 cells do not activate the receptor-mediated MAP kinase pathway, and do not induce p21WAF1/CIP1 in an autocrine manner, but inhibit proliferation through other, possibly direct nuclear signalling mechanisms. J. Cell. Physiol. 177:411-425, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 267
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Bone marrow stromal cells (BMSCs) are a heterogeneous population of cells derived from colony-forming units-fibroblastic (CFU-Fs). These cells reside in the bone marrow cavity and are capable of differentiating into several cell phenotypes including osteoblasts, chondroblasts, hematopoiesis-supporting stromal cells, and adipocytes. However, the factors that regulate the proliferation and differentiation of the BMSC population are for the most part unknown. Since many members of the receptor tyrosine kinase (RTK) family have been shown to participate in growth control of various mesenchymal cell populations, in this study we examined the expression and function of RTKs in the BMSC population. Degenerate oligonucleotides corresponding to two conserved catalytic domains of the RTK family and RT-PCR were used initially to determine which RTKs are expressed in the human BMSC (hBMSC) system. After subcloning the amplification product generated from mRNA of a multicolony-derived hBMSC strain, PDGF receptor (β), EGF receptor, FGF receptor 1, and Axl were identified by DNA sequencing of 26 bacterial colonies. Furthermore, PDGF and EGF were found to enhance BMSC growth in a dose-dependent manner and to induce tyrosine phosphorylation of intracellular molecules, including the PDGF and EGF receptors themselves, demonstrating the functionality of these receptors. On the other hand, bFGF was found to have little effect on proliferation or tyrosine phosphorylation. Since single colony-derived hBMSC strains are known to vary from one colony to another in colony habit (growth rate and colony structure) and the ability to form bone in vivo, the expression levels of these RTKs were determined in 18 hBMSC clonal strains by semiquantitative RT-PCR and were found to vary from one clonal strain to another. While not absolutely predictive of the osteogenic capacity of individual clonal strains, on average, relatively high levels of PDGF-receptor were found in bone-forming strains, while on average, nonbone-forming strains had relatively high levels of EGF-receptor. Taken together, these results indicate that RTKs play a role in the control of hBMSC proliferation, and that the differential pattern of RTK expression may be useful in correlating the biochemical properties of individual clonal strains with their ability to produce bone in vivo. J. Cell. Physiol. 177:426-438, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 268
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Vascular endothelial growth factor-C (VEGF-C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF-C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF-C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF-C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR-1 and -2, whereas of the three cell lines assessed, only BAE cells express VEGFR-3. We also demonstrate that VEGF-C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor-1. Addition of α2-antiplasmin to BME cells co-treated with bFGF and VEGF-C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF-C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF-C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis-regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell. J. Cell. Physiol. 177:439-452, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 269
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle control of histone H4 gene transcription is mediated by the multipartite promoter domain H4-Site II, which supports transcriptional activation at the G1/S phase transition and modulates basal H4 gene transcription. Proliferation-specific transcription is determined by the integrated activities of three distinct promoter factors interacting with H4-Site II: the interferon regulatory factor IRF-2 (synonymous with HiNF-M), HiNF-D (a complex between the homeodomain protein CDP-cut and the cell cycle mediators CDC2, cyclin A and pRB), as well as HiNF-P/H4TF-2. However, the contribution of HiNF-D to the enhancement and/or suppression of H4 gene transcription at specific cell cycle stages remains to be established. We used a panel of synchronized HeLa S3 cell lines containing stably integrated H4 promoter/CAT reporter gene constructs with mutations in H4-Site II. The temporal regulation of CAT mRNA accumulation under the control of the H4 promoter was analyzed by RNase protection analysis. Our main finding is that mutation of the HiNF-D/CDP-cut binding site alters the timing of histone gene activation during the cell cycle. Furthermore, our data indicate that HiNF-P/H4TF-2 may functionally compensate for HiNF-M/IRF-2 at Site II to regulate histone H4 gene transcription in HeLa S3 cervical carcinoma cells during early S phase. We postulate that HiNF-D (CDP-cut/cyclin A/CDC2/pRB containing complex) promotes HiNF-M/IRF-2 (and/or HiNF-P/H4TF-2) dependent histone H4 gene activation at the G1/S phase transition and attenuates H4 gene transcription at later cell cycle stages. The mechanistic division in the gene regulatory functions of the three H4-Site II binding proteins may ensure that histone H4 gene expression is stringently coupled with the onset of S phase in response to growth factor/cytokine-induced cell cycle progression. J. Cell. Physiol. 177:453-464, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 270
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 465-473 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Human dermal fibroblasts suspended in a collagen matrix exhibit a 4-day delay in cell division, while the same cells in monolayer divided by day 1. The initial rates of 3H-thymidine incorporation by cells in monolayer or suspended in collagen were not significantly different. When suspended in collagen, there was a threefold increase in the proportion of cells in a tetraploidal (4N) DNA state compared to the same cells in monolayer. Flow cytometry analysis and 3H-thymidine incorporation studies identified the delay of cell division as a consequence of a block in the G2/M of the cell cycle and not an inhibition of DNA synthesis. The inclusion of 150 μ/ml of hyaluronic acid (HA) in the manufacture of fibroblast populated collagen lattices (FPCL) caused a stimulation of cell division, as determined by cell counting; increased the expression of tubulin, as determined by Western blot analysis; and reduced the proportion of cells in a 4N state, as determined by flow cytometry. HA added to the same cells growing in monolayer produced a minimal increase in the rate of cell division or DNA synthesis. HA supplementation of FPCLs stimulated cell division as well as tubulin concentrations, but it did not enhance lattice contraction. The introduction of tubulin isolated from pig brain or purchased tubulin into fibroblasts by electroporation prior to their transfer into collagen lattices promoted cell division in the first 24 hours and enhanced FPCL contraction. It is proposed that tubulin protein, the building blocks of microtubules, is limited in human fibroblasts residing within a collagen matrix. When human fibroblasts are suspended in collagen, one effect of added HA may be to stimulate the synthesis of tubulin which assists cells through the cell cycle. J. Cell. Physiol. 177:465-473, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 271
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 474-482 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this study we examined the regulation of cdk1 expression in normal human epidermal keratinocytes (HEKs) and neoplastic keratinocytes. Keratinocytes were growth-arrested by allowing the cells to grow to confluence or by treating them with interferon-gamma (IFNγ) or 12-O-tetradecanoyl phorbol-13-acetate (TPA). RT-PCR and Western blot analysis demonstrated that cdk1 was profoundly reduced in growth-arrested HEKs when compared with dividing HEKs. In contrast, a squamous carcinoma cell line, SCC25, did not growth-arrest in response to growth inhibitors and did not downregulate cdk1 expression. Transfection of HEKs with a reporter gene driven off a 2.5-kb fragment of the human cdk1 promoter indicated that the downregulation of cdk1 upon growth arrest was transcriptional. Deletion mapping of the cdk1 promoter indicated that a repressor region was located between -949--722 bp. This repressor region was not operative in the SCC25 cells. Examination of DNA:protein binding complexes by gel-shift analysis indicated that nuclear factors from both proliferative and growth-arrested cells bound to the DNA fragment spanning -949--722 bp. Further analysis revealed that this binding could be resolved into a constitutive and growth arrest-specific complex that bound in a similar fashion to regions spanning -892--831 bp and -831--774 bp, respectively. The putative growth arrest-specific complex was not found in contact-inhibited fibroblasts and was found at very low levels in SCC25 cells, indicating that the putative repressor binding was growth arrest-specific and possibly keratinocyte-specific. The binding complexes bound to these two fragments were localized, by competition analysis, to regions -874--853 bp and -830--800 bp. This is the first report of a transcriptional repressor being operative during keratinocyte growth arrest. J. Cell. Physiol. 177:474-482, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 272
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 483-492 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Treatment with the sulfhydryl oxidant diamide denatures and aggregates cellular proteins, which prior studies have implicated as an oxidative damage that activates the heat shock transcription factor and induces thermotolerance. This study was initiated to further characterize cellular response to diamide-denatured proteins, including their involvement in diamide cytotoxicity. Cytotoxic diamide exposures at 37.0°C denatured and aggregated cellular proteins in a manner that was proportional to cell killing, but this correlation was different than that established for heated cells. Diamide exposures at 24.0°C were orders of magnitude less cytotoxic, with little additional killing occurring after diamide was removed and cells were returned to 37.0°C. Thus, protein denaturation that occurred at 37.0°C, after proteins were chemically destabilized by diamide at 24.0°C [Freeman et al., J. Cell. Physiol., 164:356-366 (1995) Senisterra et al., Biochemistry 36: 11002-11011 (1997)], had little effect on cell killing. Thermotolerance protected cells against diamide cytotoxicity but did not reduce the amount of denatured and aggregated protein observed immediately following diamide exposure. However, denatured/aggregated proteins in thermotolerant cells were disaggregated within 17 h following diamide exposure, while no disaggregation was observed in nontolerant cells. This more rapid disaggregation of proteins may be one mechanism by which thermotolerance protects cells against diamide toxicity, as it has been postulated to do against heat killing. As with heat shock, nontoxic diamide exposures induced maximal tolerance against heat killing; however, there was no detectable, increased synthesis of heat shock proteins. Thus, diamide treatment proved to be a reproducible procedure for inducing a phase of thermotolerance that does not require new heat shock protein (HSP) synthesis, without having to use transcription or translation inhibitors to suppress HSP gene expression.These results complement those from studies with other stresses to establish the importance of protein denaturation/aggregation as a cytotoxic consequence of stress and a trigger for thermotolerance induction. The data also illustrate that differences in how proteins are denatured and aggregated can affect their cytotoxicity and the manner in which thermotolerance is expressed. J. Cell. Physiol. 177:483-492, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 273
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 499-499 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 274
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 501-506 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: CDK9 is a cdc2-related kinase protein. Previously named PITALRE, this protein is a serine-threonine kinase involved in many physiological processes. Unlike most of the cdc2-like kinases, its activity is not cell cycle-regulated. CDK9 acts preferentially in processes different from cell-cycle regulation, such as differentiation. Its cyclin partners, cyclins of T family, recently have been isolated. CDK9 immunoprecipitates with several unidentified polypeptides that may regulate its kinase activity. CDK9 has been shown to associate with the HIV-Tat protein, suggesting a possible involvement in AIDS. CDK9 recently was shown to be responsible for the kinase activity associated with the TAK complex and with the P-TEFb complex, suggesting activity also in the transcription process. J Cell Physiol 177:501-506, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 275
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 313-327 
    ISSN: 0730-2312
    Keywords: c-myc promoter utilization ; SV40-induced transformation ; transcription ; temperature-sensitive cells ; 7SK RNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The process of oncogenic transformation has been widely studied but is still poorly understood. We have focused on the mechanism of deregulation of the c-myc gene during transformation of a temperature-sensitive SV40-transformed mouse cell line. Run-on transcription assays showed that the two c-myc minor promoters, P1 and P3, are transiently activated following induction of transformation and that peak activation of both promoters is preceded by a large increase in transcription of a small RNA (7SK). To test the possibility that this RNA might participate in promoter activation, we transfected cells with sense and antisense oligodeoxynucleotides corresponding to different regions of the 7SK RNA predicted to be accessible within the RNP particle. Out of 14 oligos tested, inhibition of activation of P1 and/or P3 was observed with four antisense oligonucleotides corresponding to looped regions in the putative 7SK secondary structure. To identify c-myc promoter sequences which might serve as targets for 7SK activity, we carried out mobility-shift assays with either whole or 7SK-depleted cell extracts. The CT element of the c-myc promoter formed a 7SK-dependent complex which could be competed only with the same antisense 7SK oligo that suppressed P1 and P3 activation in vivo. Taken together these results suggest that 7SK RNP participates in transformation-dependent c-myc deregulation. J. Cell. Biochem. 64:313-327. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 276
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 295-312 
    ISSN: 0730-2312
    Keywords: osteoblast ; glucocorticoids ; hydroxyapatite ; osteoprogenitor ; bone marrow ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM β-glycerophosphate (βGP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM βGP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number or APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes. J. Cell. Biochem. 64:295-312. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 277
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 343-352 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 278
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 353-368 
    ISSN: 0730-2312
    Keywords: transforming growth factor α ; “TGFαase” ; ultraviolet radiation ; cell surface proteases ; HeLa cells ; membrane fragments ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have investigated the effect of UVC irradiation on “TGFαase” activity using both intact HeLa cells and isolated membrane fragments with an assay based on the previously described nonapeptide substrate method [Brown et al. (1992): J Cell Biochem 48:411-423]. This method allows recognition of cleavage at the scissile bond cognate with that of the TGFα N-terminal cleavage site from its membrane-bound precursor. The level of ectoendopeptidase (including “TGFαase”) activity observed on intact cells was lower than that of ectoaminopeptidases. Addition of foetal bovine serum (FBS) enhanced aminopeptidase and dipeptidyl peptidase activity but inhibited “TGFαase” activity, while phorbol 12-myristate 13-acetate (PMA) had no significant effect on the ectopeptidases monitored, except for “TGFαase,” which was also inhibited, in contradistinction to their effects in other cell systems. Sublethal UVC irradiation (10 Jm 2) of the cultures resulted in activation of the ectoaminopeptidase and ectoendopeptidases which was maximal 16 and 20-24 h after irradiation, respectively. The addition of FBS to these irradiated cells appeared to reduce the increase in endopeptidase products, due in part to increased aminopeptidase activity but also to the direct inhibitory effect of FBS on the “TGFαase.” The activation of these proteases by UVC, even at high fluences (500 Jm 2), was not observed within the first 30 min after the cells were irradiated. Purified plasma membrane fragments were prepared from suspension cultures of HeLa cells and displayed high levels of “TGFαase” activity. The rate of “TGFαase” activity using 140 nM peptide substrate (P9) was 5.6 pmol/min/mg membrane protein, which was elevated to 13.7 pmol/min/mg membrane protein, 20 h after the cells had been irradiated with 10 Jm 2 UVC. Inhibition studies indicate that the plasma membrane “TGFαase” is a metalloenzyme, as it was inhibited by EDTA, EGTA, and 1,10-phenanthroline but not by elastase or serine protease inhibitors. “TGFαase” activity on intact cells was shown to be inhibited by 1,10-phenanthroline, which further supports this suggestion. Treatment of the membranes with Triton X-100 resulted in a loss of “TGFαase” activity, raising the possibility that this enzyme may require a cofactor to be fully functional. We show that in purified membrane preparations of HeLa cells there is evidence for the presence of a “TGFαase” which can be activated by UV irradiation, which differs from the putative “TGFαase” described in various other cell lines, and which does not seem dependent on protein kinase C (PKC) activity. J. Cell. Biochem. 64:353-368. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 279
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 390-402 
    ISSN: 0730-2312
    Keywords: carboxy-terminal repeat domain (CTD) ; RNA polymerase II ; cyclin-dependent kinases ; phosphorylation ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cdc2 kinase triggers the entry of mammalian cells into mitosis, the only cell cycle phase in which transcription is globally repressed. We show here that Cdc2 kinase phosphorylates components of the RNA polymerase II transcription machinery including the RNA polymerase II carboxy-terminal repeat domain (CTD). To test specifically the effect of CTD phosphorylation by Cdc2 kinase, we used a yeast in vitro transcription extract that is dependent on exogenous RNA polymerase II that contains a CTD. Phosphorylation was carried out using immobilized Cdc2 so that the kinase could be removed from the phosphorylated polymerase. ATPγS and Cdc2 kinase were used to produce an RNA polymerase 110 that was not detectably dephosphorylated in the transcription extract. RNA polymerase 110 produced in this way was defective in promoter-dependent transcription, suggesting that phosphorylation of the CTD by Cdc2 kinase can mediate transcription repression during mitosis. In addition, we show that phosphorylation of pol II with the human TFIIH-associated kinase Cdk7 also decreases transcription activity despite a different pattern of CTD phosphorylation by this kinase. These results extend previous findings that RNA polymerase 110 is defective in preinitiation complex formation. Here we demonstrate that phosphorylation of the CTD by cyclin-dependent kinases with different phosphoryl acceptor specificities can inhibit transcription in a CTD-dependent transcription system. J. Cell. Biochem. 64:390-402. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 280
    ISSN: 0730-2312
    Keywords: PDGF ; PDGF receptor ; cell migration ; endothelial cell ; endothelium ; angiogenesis ; in vitro ; urokinase-type plasminogen activator ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To explore direct effects of platelet-derived growth factor (PDGF) on endothelial cells during angiogenesis in vitro, we have used cloned bovine aortic endothelial cells that spontaneously form cord structures. Recently we have shown that cells forming these endothelial cords express PDGF β-receptors and that PDGF-BB can contribute to cellular proliferation and cord formation. In this study we investigated whether PDGF-induced cellular migration might also contribute to endothelial repair and angiogenesis in vitro.Ten individual endothelial cells in cords were tracked at an early stage of cord formation by video-timelapse microscopy. PDGF-BB (100 ng/ml) induced an increase in endothelial cell movement of 67 ± 15% as compared with diluent control. Interestingly, PDGF-BB also increased movements of entire cord structures, followed at branching points, by 53 ± 12% over diluent control. Taken together, these video-timelapse experiments suggested that the apparent movements of single endothelial cord cells might also be due to the motion of entire underlying cord structures in response to PDGF. To analyze the response of single endothelial cord cells we therefore examined whether PDGF-induced migration contributes to endothelial repair. Abrasions were applied with a razor blade to confluent monolayers of endothelial cells at an intermediate stage of cord formation. PDGF-BB concentration-dependently increased the distance to which cord-forming endothelial cells migrated into the abrasion. An increased number of elongated, i.e., probably migrating, endothelial cells was found in the abrasion in response to PDGF-BB. However, there was no effect of PDGF-BB on the total number of endothelial cells found in the abrasion. PDGF-AA affected neither the distance to which the cells migrated nor the number of elongated cells.Actin and tubulin stainings revealed that these cytoskeletal structures were not appreciably altered by PDGF-BB. Furthermore, urokinase-type plasminogen activator transcripts were not modulated in response to PDGF-BB.We conclude that in this model of angiogenesis in vitro PDGF-BB can elicit the movement of entire cord structures, possibly via u-PA-independent mechanisms. PDGF-BB also controls the migration of single cord-forming endothelial cells. Thus, PDGF-BB possibly contributes to endothelial repair and angiogenesis by direct effects on proliferation and composite movements of PDGF β-receptor-expressing endothelial cells and cords. J. Cell. Biochem. 64:403-413. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 281
    ISSN: 0730-2312
    Keywords: myosin heavy chain ; gene expression ; neonatal rat heart culture ; contraction ; 2,3 butanedione monoxime ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: It is generally accepted that mechanical stress of cardiomyocytes increases RNA and protein synthesis of myosin heavy chain (MHC) quantitatively but it is still a matter of debate whether MHC gene expression is also changed qualitatively. We investigated expression of MHC genes of spontaneously contracting neonatal cardiomyocytes experimentally arrested by permanent depolarization [potassium chloride (KCI)] as well as by electromechanical uncoupling [2,3 butanedione monoxime (BDM)]. Relative distribution of MHC mRNA isoforms (α and β) was studied by quantitative polymerase chain reaction. Expression of MHC isoenzymes was the same in contracting (34.5% β-MHC) and arrested (40.5% and 33.0% β-MHC in KCl and BDM, respectively) cardiomyocytes. However, treatment with phenylephrine for the same period increased significantly β-MHC expression to 55%. We conclude that hormonal factors rather than Ca2- or mechanical stress regulate qualitatively MHC gene expression. J. Cell. Biochem. 64:458-465. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 282
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 492-498 
    ISSN: 0730-2312
    Keywords: adenylylcyclase ; protein kinase C ; crosstalk ; conformation ; detergent ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phorbol ester treatment enhanced the catalytic activity of type II adenylyl cyclase overexpressed in insect cells. In cells coexpressing type II adenylyl cyclase and protein kinase C-α, type II adenylyl cyclase catalytic activity was higher even in the absence of phorbol ester treatment; phorbol ester treatment further and markedly enhanced type II adenylyl cyclase catalytic activity. However, this enhancement, either by phorbol ester treatment or by coexpression of protein kinase C-α, was lost following membrane solubilization with detergents. This attenuation was unaffected by phosphatase inhibitor or salts. In contrast, membrane solubilization did not affect forskolin-stimulated type II adenylyl cyclase catalytic activity. Purified type II adenylyl cyclase was stimulated by forskolin and Gsα, but not by protein kinase C-α. Therefore, a specific mammalian protein kinase C isoenzyme can activate type II adenylyl cyclase, but the mechanism clearly differs from that underlying either Gsα- or forskolin-mediated stimulation. J. Cell. Biochem. 64:492-498. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 283
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 505-513 
    ISSN: 0730-2312
    Keywords: cyclic strain ; human umbilical vein endothelial cell ; integrin ; focal adhesion kinase ; fibronectin ; collagen type 1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cyclic strain has been shown to modulate endothelial cell (EC) morphology, proliferation, and function. We have recently reported that the focal adhesion proteins focal adhesion kinase (pp125FAK) and paxillin, are tyrosine phosphorylated in EC exposed to strain and these events regulate the morphological change and migration induced by cyclic strain. Integrins are also localized on focal adhesion sites and have been reported to induce tyrosine phosphorylation of pp125FAK under a variety of stimuli. To study the involvement of different integrins in signaling induced by cyclic strain, we first observed the redistribution of α and β integrins in EC subjected to 4 h cyclic strain. Human umbilical vein endothelial cells (HUVEC) seeded on either fibronectin or collagen surfaces were subjected to 10% average strain at a frequency 60 cycles/min. Confocal microscopy revealed that β1 integrin reorganized in a linear pattern parallel with the long axis of the elongated cells creating a fusion of focal adhesion plaques in EC plated on either fibronectin (a ligand for α5β1) or collagen (a ligand for α2β1) coated plates after 4 h exposure to cyclic strain. β3 integrin, which is a vitronectin receptor, did not redistribute in EC exposed to cyclic strain. Cyclic strain also led to a reorganization of α5 and α2 integrins in a linear pattern in HUVEC seeded on fibronectin or collagen, respectively. The expression of integrins α5, α2, and β1 did not change even after 24 h exposure to strain when assessed by immunoprecipitation of these integrins. Cyclic strain-induced tyrosine phosphorylation of pp125FAK occurred concomitant with the reorganization of β1 integrin. We concluded that α5β1 and α2β1 integrins play an important role in transducing mechanical stimuli into intracellular signals. J. Cell. Biochem. 64:505-513. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 284
    ISSN: 0730-2312
    Keywords: cytokines ; lipopolysaccharide ; interleukin-1β ; interferon-γ ; ECM ; Matrigel ; PGI2, iNOS ; HUVEC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Both cell-matrix and cell-cell interactions are important regulators of the function of most human cells. In this study we investigated how these interactions controlled the production of vasodilators nitric oxide (NO), and prostacyclin (PGI2), in freshly isolated human umbilical vein endothelial cells (HUVECs). On the reconstituted extracellular matrix (ECM) Matrigel freshly isolated HUVECs treated with interleukin-1β, lipopolysaccharide, and interferon-γ, produced more NO, but less PGI2, than on gelatin substratum. High cell density was essential for inducibility of NO production in cells plated on gelatin substratum, but not on ECM. In cells plated on gelatin substratum at low cell density, which mimicked conventional HUVEC culturing conditions, both inducible NO production and the inducible NO synthase (iNOS) mRNA levels, detected by competitive RT-PCR, were low. However, inducible PGI2 production remained high in these cells. Highest inducible NO productions were observed in HUVECs that presumably had best maintained their original differentiated phenotype. Thus our data imply that the inducible NO and PGI2 productions of freshly isolated HUVECs were differently controlled by the extracellular matrix and cell density. Our data suggest that both cell-matrix and cell-cell interactions may have a strong influence on the proinflammatory cytokine responses of human vascular endothelial cells. J. Cell. Biochem. 64:538-546. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 285
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 605-617 
    ISSN: 0730-2312
    Keywords: breast cancer ; proteoglycans ; heparan sulfate ; chondroitin sulfate ; sulfation ; fibroblast growth factor-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605-617. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 286
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 644-650 
    ISSN: 0730-2312
    Keywords: nuclear matrix proteins ; transgenic murine lens epithelial cells ; vimentin ; human transgenic lens epithelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear matrix (NM) proteins of six tissue cultured lens epithelial cell lines and one embryonic rabbit epidermal cell line were analyzed to determine possible tissue and species specificity of these proteins. The NM proteins were isolated by the modified Penman technique. The tissue cultured cells were pulsed with [35S] methionine and nuclear matrix proteins were fractionated by two-dimensional (2-D) gel electrophoresis. The 2-D gels were dried and autoradiographed. The relative abundance of spot patterns of nuclear matrix proteins of different cells were compared. The data from these experiments revealed that all the examined cell lines have distinct spot patterns, however, all of NM profile showed a spot pattern in the 45 kDa region with acidic pH. Some of these spots cross-reacted with anti-vimentin antibodies, whereas a prominent protein spot in this region did not cross react with either vimentin or actin antibodies. The observed variations in the NM protein patterns of lens epithelial cells may reflect tissue and species specificity and also a role in the regulatory properties of these nuclear proteins in the eye tissue development. J. Cell. Biochem. 64:644-650. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 287
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 43-53 
    ISSN: 0730-2312
    Keywords: rho A ; C3 exoenzyme ; focal adhesion ; costamere ; myofibrillogenesis ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The aim of this study was to provide morphological evidence for the presence of rho A protein in developing cardiomyocytes and to investigate its possible role in myofibrillogenesis. Immunostaining with a monoclonal anti-rho antibody gave a diffuse pattern in the cytosol of cultured cardiomyocytes. Introduction of C3 exoenzyme into the cells by electroporation was used to inactivate rho A protein by ADP-ribosylation. An immunostaining with anti-vinculin, anti-talin, and anti-integrin antibodies showed the focal adhesions in electroporation control cardiomyocytes to be evenly distributed in the ventral sarcolemma; the costameric structure was also detected using these antibodies. In contrast, in C3 exoenzyme treated cells, focal adhesions were disassembled and costamere were absent; in addition, β-actin-positive, non-striated fibrils were lost and assembly of M-protein, titin, and α-actinin into myofibrils was poor, as shown by diffuse and filamentous staining pattern. C3 exoenzyme treatment had a less marked effect on mature cardiomyocytes than on immature cells; in this case, cells became distorted and few myofibrils were seen. The intensity of anti-phosphotyrosine antibody staining of the focal adhesion was also decreased or diffuse in C3 exoenzyme-treated cardiomyocytes, suggesting dephosphorylation of focal adhesion components. We therefore conclude that small G protein rho A plays an important role in myofibril assembly in cardiomyocytes. J. Cell. Biochem. 66:43-53, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 288
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 153-164 
    ISSN: 0730-2312
    Keywords: thermotolerance ; molecular chaperone ; breast cancer and CHO cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Constitutive expression of human hsp27 resulted in a 100-fold increase in survival to a single lethal heat shock in CHO cells without effecting the development of thermotolerance. A possible mechanism for the thermoprotective function of hsp27 may be increased recovery of protein synthesis and RNA synthesis following a heat shock. A lethal heat shock (44°C, 30 min) results in a 90% reduction in the rate of protein synthesis in non-tolerant cells. Control transfected cells recovered protein synthesis to a pre-heat shock rate 10 h after the heat shock; while cell lines that constitutively express human hsp27 recovered 6 h after the heat shock. Thermotolerant cells had a 50% reduction in protein synthesis, which recovered within 7 h following the heat shock. The same lethal heat shock (44°C, 30 min) reduced RNA synthesis by 60% in the transfected cell lines, with the controls recovering in 7 h; while the hsp27 expressing cell lines recovered within 5 h. Thermotolerant cells had a 40% reduction in RNA synthesis and were able to recover within 4 h. The enhanced ability of hsp27 to facilitate recovery of protein synthesis and RNA synthesis following a heat shock may provide the cell with a survival advantage. J. Cell. Biochem. 66:153-164, 1997. © 1997 Wiley-Liss Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 289
    ISSN: 0730-2312
    Keywords: vitamin D receptor ; retinoid X receptor ; transactivation systems ; vitamin D regulation ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factors of the nuclear hormone receptor familiy regulate gene expression via a complex network of macromolecular interactions. The ligand dependent activity of the vitamin D receptor is of particular interest because it modulates gene expression by the heterodimeric interaction with retinoid X receptors. We report here that individual functions of the vitamin D receptor including DNA-binding, homo- and heterodimerization and transactivation can be reconstituted in the yeast Saccharomyces cerevisiae. Interestingly, the simultaneous expression of the native vitamin D receptor and the retinoid X receptor β resulted in a ligand independent transactivation of the lacZ reporter gene coupled to a mouse osteopontin vitamin D response element. However, homodimerization of the vitamin D receptor and heterodimerization were strongly enhanced upon ligand binding, when the receptors were expressed as fusion proteins with the Gal4 transcription factor in a yeast two-hybrid system. Furthermore, transactivating activity of a Gal4-fused vitamin D receptor was induced by vitamin D in a one-hybrid system devoid of retinoid X receptors. In addition, both Gal4-based systems behaved similar with regard to their dose-dependent response to vitamin D and related compounds when compared to the transcriptional activity of the vitamin D receptor in transiently transfected MCF-7 cells. Our results point out that specific ligands strongly enhanced receptor dimerization and induced transactivation in yeast and in MCF-7 cells. The constitutive transactivation by vitamin D receptor-retinoid X receptor heterodimers in yeast, depending on DNA binding of the receptors, strongly argues for the existence of cofactors, which are absent in yeast, but play a fundamental role in gene regulation in higher eukaryotic organisms. J. Cell. Biochem. 66:184-196, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 290
    ISSN: 0730-2312
    Keywords: nerve growth factor ; fibroblast growth factor ; K-252a ; staurosporine ; p140trk ; receptor ; signal transduction ; tyrosine kinase ; transfection ; overexpression ; PC12/endothelial hybrid cells ; DNA synthesis ; proliferation ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nerve growth factor (NGF) regulates proliferation, differentiation, and survival of sympathetic and sensory neurons through the tyrosine kinase activity of its receptor, p140trk. These biological effects of NGF depend upon the signal-mediating function of p140trk substrates which are likely to differ from cell to cell. To define p140trk receptor substrates and the details of signalling by NGF in the hybrid cell PC12EN, we stably transfected cultures with a vector encoding a full-length human p140trk cDNA sequence. Two stably transfected clones, one expressing p140trk with higher affinity (PC12EN-trk3; Kd 57.4 pM, Bmax 9.7 pmole/mg) and one expressing p140trk with a lower affinity (PC12EN-trk1; Kd 392.4 pM, Bmax 5.7 pmole/mg) were generated. Radioreceptor assays indicate that transfected p140trk receptors show slow NGF-dissociation kinetics, are resistant to trypsin or Triton X-100 treatment, are specific for NGF compared to other neurotrophins, and are internalized or downregulated as are native PC12 p140trk receptors. NGF stimulates p140trk tyrosine phosphorylation in a dose- (0.01-10 ng/ml) and time- (5-120 min) dependent manner, and tyrosine phosphorylation was inhibited by 200-1,000 nM K-252a. NGF-induced Erk stimulation for 60 min was assessed using myelin basic protein as a substrate. NGF treatment also led to an increased phosphorylation of p70S6k, SNT, and phospholipase Cγ, demonstrating that the major NGF-stimulated signalling pathways found in other cells are activated in PC12EN-trk cells. Staurosporine (5-50 nM) rapidly and dBcAMP (1 mM) more slowly, but not NGF induced morphological differentiation in PC12EN-trk cells. Rather, NGF treatment in low-serum medium stimulated a 1.3- and 2.3-fold increase in DNA synthesis measured by [3H]thymidine incorporation in PC12EN-trk1 and PC12EN-trk3, respectively. These data highlight the functionality of the transfected p140trk receptors and indicate that these transfected cells may serve as a novel cellular model facilitating the study of the mitogenic properties of NGF signalling and the transducing role of the p140trk receptor substrates. J. Cell. Biochem. 66:229-244. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 291
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 277-285 
    ISSN: 0730-2312
    Keywords: pRb ; p107 ; p130/Rb2 ; TBP ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The conserved region 1 and the extreme N-terminus of adenoviral oncoprotein E1A are essential for transforming activity. They also play roles in the interaction of E1A with p300/CBP and pRb and are involved in both transactivation and repression of host gene expression. It was reported recently that p53-mediated transactivation is specifically repressed by E1A and that p53-induced apoptosis can be protected by pRb. In this report, we investigated the roles of pRb and p300 in the N-terminus of E1A-mediated transcriptional regulation. We demonstrate here that p300 and pRb have no effect on DBD.1-70 transactivation and that overexpression of p300 or pRb failed to relieve the repression by E1A. Repression of p53 transactivation requires both the extreme amino terminus and CR1 but not CR2. This repressive activity of E1A specifically correlates with E1A's ability to bind p300 and TBP. On the other hand, E1A inhibited the transactivation activity of a fusion construct containing the DNA binding domain of yeast Gal4 and the transactivation domain of p53. When p53 was cotransfected with E1A, similar inhibition was found in Saos-2 cells that lack endogenous pRb and p53 activity. Introduction of pRb into Saos-2 cells did not affect p53 transcription activity. E1A-mediated repression can be relieved by overexpression of either p300, hTBP, or TFIIB but cannot be released by overexpression of pocket proteins. Our data suggest that p300/CBP and TBP but not the pocket proteins, pRb, p107, and pRb2/p130 are functional targets of E1A in transcriptional regulation and that p53 transactivation requires the function of the p300/TBP/TFIIB complex, thus delineating a new pathway by which E1A may exert its transforming activity. J. Cell. Biochem. 66:277-285, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 292
    ISSN: 0730-2312
    Keywords: transcription ; promoter ; mRNA stability ; nucleic acid sequence ; matrix metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1β) is a potent cytokine that stimulates interstitial collagenase-1 (matrix metalloproteinase-1; MMP-1). In this study, we compared the mechanism(s) by which IL-1β induces collagenase gene expression in two very different cells, normal human foreskin fibroblasts (HFFs) and an aggressive breast cancer cell line, BC-8701 cells. Northern analysis showed that the time course of collagenase induction was distinct in the two cells: although both cells expressed low levels of MMP-1 constitutively, addition of IL-1β increased MMP-1 mRNA in HFFs by 1 h and levels remained high over a 24-h period. In contrast, MMP-1 levels in IL-1β-treated BC-8701 cells did not increase until 4 h, peaked by 12 h and then declined. To analyze the transcriptional response, we cloned and sequenced more than 4,300 bp of the human MMP-1 promoter, and from this promoter clone, we prepared a series of 5′-deletion constructs linked to the luciferase reporter and transiently transfected these constructs into both cell types to measure both basal and IL-1β induced transcription. When both cell types were uninduced, promoter fragments containing less than 2,900 bp gave only a minimal transcriptional response, while larger fragments showed increased transcriptional activity. With IL-1β treatment, significant responsiveness (P 〈 0.001) in HFFs was seen only with the larger fragments, while in the BC-8701 cells, all fragments were significantly induced with IL-1β. Finally, we found that IL-1β stabilized MMP-1 mRNA in normal fibroblasts, but not in BC-8701 breast cancer cells. We conclude that both the transcriptional and post-transcriptional regulation of MMP-1 gene expression by IL-1β is controlled by cell-type specific mechanisms, and we suggest that IL-1 induced MMP-1 expression in tumor cells and in neighboring stromal cells may amplify the invasive ability of tumor cells. J. Cell. Biochem. 66:322-336, 1977. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 293
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 370-385 
    ISSN: 0730-2312
    Keywords: nucleus ; glycoprotein ; lectin ; HL60 ; affinity chromatography ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Some years ago, a lectin designated CBP70 that recognized glucose (Glc) but had a stronger affinity for N-acetylglucosamine (GlcNAc), was first isolated from HL60 cell nuclei. Recently, a cytoplasmic form of this lectin was described, and one 82 kDa nuclear ligand was characterized for the nuclear CBP70. In the present study, the use of Pronase digestion and the trifluoromethanesulphonic acid (TFMS) procedure strongly suggest that the nuclear and the cytoplasmic CBP70 have a same 23 kDa polypeptide backbone and, consequently, could be the same protein. In order to know the protein better and to obtain the best recombinant possible in the future, the post-translational modification of the nuclear and cytoplasmic CBP70 was analyzed in terms of glycosylation. Severals lines of evidence indicate that both forms of CBP70 are N- and O-glycosylated. Surprisingly, this glycosylation pattern differs between the two forms, as revealed by β-elimination, hydrazinolysis, peptide-N-glycosydase F (PNGase F), and TFMS reactions. The two preparations were analyzed by affinity chromatography on immobilized lectins [Ricinus communis-I agglutinin (RCA-I), Arachis hypogaea agglutinin (PNA), Galanthus nivalis agglutinin (GNA), and wheat germ agglutinin (WGA)] and by lectin-blotting analysis [Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Lotus tetragonolobus (Lotus), succinylated-WGA, and Psathyrella velutina agglutinin (PVA)]. Both forms of CBP70 have the following sugar moities: terminal βGal residues, Galβ1-3 GalNAc, Man α1-3 Man, sialic acid α2-6 linked to Gal or GalNAc; and sialic acid α2-3 linked to Gal. However, only nuclear CBP70 have terminal GlcNAc and α-L-fucose residues.All these data are consistent with the fact that different glycosylation pattern found for each form of CBP70 might act as a complementary signal for cellular targeting. J. Cell. Biochem. 66:370-385, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 294
    ISSN: 0730-2312
    Keywords: vitamin D3 analogs ; 24-oxo metabolites ; growth inhibition ; differentiation ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The seco-steroid hormone, 1α,25 dihydroxyvitamin D3 (1α,25(OH)2D3) binds to a specific nuclear receptor that acts as a ligand-inducible transcription factor. The resulting genomic effects include partial arrest in G0/G1 of the cell cycle and induction of differentiation; these effects have been observed in various types of cancer. Recently, we produced enzymatically the natural 24-oxo metabolites of 1α,25(OH)2D3 and two of its potent synthetic analogs (1α,25-(OH)2-16-ene-D3 and 1α,25-(OH)2-20-epi-D3) using a rat kidney perfusion system. We have found that the 24-oxo metabolites of both 1α,25(OH)2D3 and its analogs have either the same or greater antiproliferative activity against various cancer cells as their parental compounds. Notably, two cell lines (DU-145 (prostate cancer) and MDA-MB-436 [breast cancer]) that were extremely resistant to the antiproliferative effects of vitamin D3 analogs displayed greater sensitivity towards the 24-oxo metabolite of the vitamin D3 analog. Similarly, the 24-oxo metabolites had the capacity to induce differentiation and apoptosis and to diminish the proportion of cells in S phase. Most interestingly, while the analog 1α,25(OH)2-20-epi-D3 induced expression of BRCA1 in MCF-7 breast cancer cells; its 24-oxo metabolite dramatically suppressed BRAC1 expression. Thus, we have shown for the first time that the various biological activities produced by the hormone 1α,25(OH)2D3 and some of its analogs may represent a combination of actions by the hormone 1α,25(OH)2D3 and its natural 24-oxo metabolites. J. Cell. Biochem. 66:413-425, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 295
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 66 (1997), S. 404-412 
    ISSN: 0730-2312
    Keywords: osteocalcin ; osteosarcoma cells ; methylation ; bone-derived cells ; DNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: DNA methylation is a general mechanism of controlling tissue-specific gene expression. Osteocalcin is a bone matrix protein whose expression is limited almost entirely to osteoblasts. We were interested in determining whether the state of methylation of the osteocalcin gene plays a role in its expression by studying human bone-derived (MG-63, U2-Os, SaOs-2) and other types (normal lymphocytes, A-498, Hep G2) of cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that osteocalcin mRNA production is stimulated by 1,25(OH)2D3 in MG-63 and induced in SaOs-2 but not in U2-Os osteoblast-like osteosarcoma cells. Genomic analysis of the human osteocalcin gene showed that the local surroundings of this single-copy gene are identical in all cell lines studied. Using an isoschizomeric pair of restriction enzymes and Southern analysis, we found that the osteocalcin gene is identically methylated in all three osteosarcoma cell lines. The same sites are also methylated in human normal lymphocytes and A-498 kidney cells, whereas the degree of methylation is higher in Hep G2 human hepatocellular carcinoma cells. Furthermore, the osteocalcin gene was identically protected against enzymatic digestion at the chromatin level in normal lymphocytes and in all cell lines studied. Induction of hypomethylation of DNA by 5-azacytidine treatment did not cause an induction of osteocalcin synthesis in these cell lines. On the contrary, it attenuated the induction by 1,25(OH)2D3 in MG-63 cells. In gel mobility shift assays, human vitamin D receptor and the AP-1 transcription factor bound to an unmethylated response element oligonucleotide of the osteocalcin gene with greater affinity than to an in vitro methylated response element. These results indicate that the in vivo methylation state of the osteocalcin gene at sites determined in this study does not correlate with the inducibility of this gene. Nevertheless, the in vitro results clearly indicated that hypomethylation of critical regions of the osteocalcin gene promoter is a potential mechanism influencing effective binding of specific nuclear factors and, consequently, gene expression. J. Cell. Biochem. 66:404-412, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 296
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 267-275 
    ISSN: 0730-2312
    Keywords: allylamine ; osteopontin ; vascular smooth muscle cells ; vascular injury ; atherosclerosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Repeated cycles of vascular injury by allylamine induce vascular lesions similar to those seen in atherosclerotic vessels, or following balloon catheterization. Vascular (aortic) smooth muscle cells harvested from allylamine-treated animals (i.e., allylamine cells) acquire a proliferative advantage relative to control counterparts that is associated with differential secretion and extracellular matrix sequestration of several proteins. In the present study, we have characterized two of these proteins (Mr 52 and 36 kDa; pl 5.6 and 5.2, respectively) and their putative role in the expression of a proliferative phenotype. Because the physical properties of these proteins were comparable to those of osteopontin (OPN) and its thrombin-generated fragment(s), initial experiments were conducted to examine the expression and processing of OPN in this cell system. OPN mRNA expression was enhanced during early G1 cell cycle progression in allylamine cells relative to control counterparts. However, comparable amounts of OPN (Mr 56, 52, and 50 kDa) were detected by Western analysis in media conditioned by both cell types using the OP-199 or B77-Rat1 antibodies to OPN. Allylamine cells, however, produced increased amounts of a 36 kDa protein recognized by the OP-199 antibody. Incubation of conditioned media from [35S]methionine-labeled allylamine cells with thrombin decreased the intensity of the 52 kDa protein, while increasing the intensity of a 36 kDa protein. RT-PCR analysis demonstrated expression of a 1.2 kb OPN band in both cell types consistent with the predicted size of OPN mRNA, suggesting that the 36 kDa fragment recognized by OP-199 in allylamine cells was likely not due to altered splicing of the OPN transcript. To determine if OPN and/or the 36 kDa fragment played a central role in the proliferative capacity of allylamine cells, the effect of an antibody to an αv integin subunit was examined. An antibody to the αv subunit, but not α4, nullified the proliferative advantage of allylamine cells relative to control counterparts, suggesting that integrin-mediated signaling is a key feature of the proliferative phenotype of allylamine cells. We conclude that enhanced proteolytic cleavage of OPN may characterize the modulation of vascular SMCs to a more proliferative phenotype following chemical injury by allylamine. J. Cell. Biochem. 65:267-275. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 297
    ISSN: 0730-2312
    Keywords: bone morphogenetic protein ; defined media ; in vitro ; development ; stem cell ; ascorbic acid ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During embryonic development, cartilage formation involves the condensation of mesenchymal stem cells and a series of maturation steps that ultimately results in the mineralized hypertrophic chondrocyte. The embryonic, murine, mesenchymal stem cell line, C3H/10T1/2, is pluripotent; exposure to azacytidine or to bone morphogenetic protein-2 or -4 results in low rates of differentiation to three mesengenic lineages. In contrast to previous studies, we report conditions for 10T1/2 differentiation specifically to the cartilage lineage and at high yields. These conditions include high cell density micromass cultures, a purified mixture of osteoinductive proteins (BP; Intermedics Orthopedics, Denver, CO), a serum substitute, 50 μg/ml ascorbic acid, and 10 mM β-glycerophosphate. The cartilagenous fate was confirmed by 1) histological detection of sulfated proteoglycans, 2) electron microscopic detection of proteoglycan and rounded cells separated by extracellular matrix containing short, disorganized collagen fibrils, 3) morphological detection of a chondrocytes surrounded by a territorial matrix and encompassed within a distinct perichondrium, and 4) immunocytochemical detection of type II collagen and link protein. After 4 weeks in culture, mature although unmineralized cartilage was observed, as indicated by hypertrophic morphology, immunocytochemical detection of osteocalcin, and histological detection of lacunae. These conditions promote overt chondrogenesis for most of the treated cells and preclude lineage determination to the fat, muscle, and bone lineages, as assayed by electron microscopy and histomorphology. The faithful recapitulation of cartilage differentiation that we have established in vitro provides a versatile alternative to the use of chondrocyte and limb bud explant cultures. We propose this as a model system to study the factors that regulate commitment to the chondrogenic lineage, exclusion to related mesengenic pathways, and maturation during chondrogenesis. J. Cell. Biochem. 65:325-339. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 298
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 388-394 
    ISSN: 0730-2312
    Keywords: angiogenesis ; vasculogenesis ; collateral ; vessel ; development ; occlusion ; extracellular matrix ; collagenase ; collagen ; heart failure ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; growth factors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heart failure secondary to ischemic cardiomyopathy is the primary cause of cardiovascular mortality. The promise of the collateral circulation lies in its potential to alter the course of the natural history of coronary heart disease. The collateral circulation of the heart is responsible for supplying blood and oxygen to the myocardium at ischemic risk following severe stenosis and reduced vasoelasticity function of a major coronary artery. In response to flow, stress, and pressure, collateral vessels are restructured and remodeled. Vascular remodeling by its very nature implies synthesis and degradation of extracellular matrix components in the vessel wall. Under normal physiological conditions proteinases that break down the specialized matrix are tightly regulated by antiproteinases. The balance between proteinase and antiproteinase influences is discoordinated during collateral development which leads to adaptive changes in the structure, function, and regulation of extracellular matrix components in the vessel wall. The role of extracellular matrix components in coronary collateral vessel formation in a canine model of chronic coronary artery occlusion has been demonstrated. The role of matrix proteinases and antiproteinases in the collateral vessel play a significant role in the underlying mechanisms of collateral development. This review presents new and significant information regarding the role of extracellular matrix proteinases and antiproteinases in vascular remodeling, function, and collateral development. Such information will have a significant impact on the understanding of the basic biology of the vascular extracellular matrix turnover, remodeling, and function as well as on elucidating potential avenues for pharmacological approaches designed to increase collateral formation and optimize myocardial blood flow in the treatment of ischemic heart disease. J. Cell. Biochem. 65:388-394. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 299
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 430-442 
    ISSN: 0730-2312
    Keywords: melatonin ; pineal gland ; cerebellum ; nitric oxide ; nitric oxide synthase ; calmodulin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Constitutive rat cerebellar nitric oxide synthase (NOS) activity is shown to be inhibited by physiological concentrations of the pineal hormone melatonin. The inhibition was dose-dependent and was coupled to an inhibition of the cyclic GMP production activated by L-arginine. Results also show that calmodulin appears to be involved in this process because its presence in the incubation medium was able to prevent the effect of melatonin on both NOS activity and cyclic GMP production. Moreover, polyacrylamide gel electrophoresis studies suggest that melatonin can interact with calmodulin modifying the binding of the peptide to the synthetic NOS peptide encompassing the calmodulin-binding domain of constitutive NOS from rat cerebellum, the natural mechanism by which calmodulin activates cerebellar NOS. J. Cell. Biochem. 65:430-442. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 300
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 469-478 
    ISSN: 0730-2312
    Keywords: actin autoregulation ; swinholide A ; dimeric actin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Regulation of the assembly and expression of actin is of major importance in diverse cellular functions such as motility and adhesion and in defining cellular and tissue architecture. These biological processes are controlled by changing the balance between polymerized (F) and soluble (G) actin. Previous studies have indicated the existence of an autoregulatory pathway that links the state of assembly and expression of actin, resulting in the reduction of actin synthesis after actin filaments are depolymerized. We have employed the marine toxins swinholide A and latrunculin A, both disrupting the organization of the actin-cytoskeleton, to determine whether this autoregulatory response is activated by a decrease in the level of polymerized actin or by an increase in monomeric actin concentrations in the cell. We showed that in cells treated with swinholide A the level of filamentous actin is decreased, and using a reversible cross-linking reagent, we found that actin dimers are formed. Latrunculin A also disassembled actin filaments, but produced monomeric actin, followed by a reduction in actin and vinculin expression, while swinholide A treatment elevated the synthesis of these proteins. In cells treated with both latrunculin A and swinholide A, dimeric actin was formed, and actin and vinculin synthesis were higher than in control cells. These results suggest that the substrate that confers an autoregulated reduction in actin expression is monomeric actin, and when its level is decreased by dimeric actin formation, actin synthesis is increased. J. Cell. Biochem. 65:469-478. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...