Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1,175)
  • 1990-1994  (510)
  • 1975-1979  (3,056)
  • 1890-1899
  • 1810-1819
  • Physics  (3,113)
  • Life Sciences  (1,628)
Material
Years
Year
  • 101
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1091-1094 
    ISSN: 0887-6266
    Keywords: electrorheological fluids (ERFs) ; poly(dimethyl siloxane) gels ; artificial muscle ; electromechanical actuators ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: No abstract.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1115-1128 
    ISSN: 0887-6266
    Keywords: interface structure ; fluorescence energy transfer ; polymer blends ; latex films ; poly(methyl methacrylate) ; poly(butyl methacrylate-co-butyl acrylate) ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Immiscible polymer blend films were formed by air drying aqueous dispersions containing mixtures of a high-Tg latex, poly(methyl methacrylate), and a film-forming low-Tg latex, poly(butyl methacrylate-co-butyl acrylate). Fluorescence energy transfer experiments were used to characterize the interfaces in these films, in which one component was labeled with a donor dye and the other with an acceptor. The quantum efficiency of energy transfer (ΦET) between the donors and acceptors is influenced by the interfacial contact area between the two polymer phases. As the amount of soft component in the blend is increased, ΦET approaches an asymptotic value, consistent with complete coverage of the hard polymer surface with soft polymer. This limiting extent of energy transfer is very sensitive to the total surface area in the film, with correspondingly more energy transfer at constant volume fraction for small hard particles. Some of the details of the energy transfer are revealed through a fluorescence lifetime distribution analysis. The presence of ionic surfactant (sodium dodecyl sulfate) in the dispersion from which the latex blend film is prepared reduces the cross-boundary energy transfer by 30%, which implies that in these films the surfactant decreases the interfacial contact. After annealing the surfactant-free blends above 100°C, we observe an increase in energy transfer, consistent with a broader interface between the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1115-1128, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1153-1165 
    ISSN: 0887-6266
    Keywords: even-odd nylons ; lamellar crystals ; structure ; hydrogen-bonding schemes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 6 9 has been shown to have structures with interchain hydrogen bonds in both two and in three directions. Chain-folded lamellar crystals were studied using transmission electron microscopy and sedimented crystal mats and uniaxially oriented fibers studied by X-ray diffraction. The principal room-temperature structure shows the two characteristic (interchain) diffraction signals at spacings of 0.43 and 0.38 nm, typical of α-phase nylons; however, nylon 6 9 is unable to form the α-phase hydrogen-bonded sheets without serious distortion of the all-trans polymeric backbone. Our structure has c and c* noncoincident and two directions of hydrogen bonding. Optimum hydrogen bonding can only occur if consecutive pairs of amide units alternate between two crystallographic planes. The salient features of our model offer a possible universal solution for the crystalline state of all odd-even nylons. The nylon 6 9 room-temperature structure has a C-centered monoclinic unit cell (β = 108°) with the hydrogen bonds along the C-face diagonals; this structure bears a similarity to that recently proposed for nylons 6 5 and X3. On heating nylon 6 9 lamellar crystals and fibers, the two characteristic diffraction signals converge and meet at 0.42 nm at the Brill temperature, TB · TB for nylon 6 9 lamellar crystals is slightly below the melting point (Tm), whereas TB for nylon 6 9 fibers is ≅ 100°C below Tm. Above TB, nylon 6 9 has a hexagonal unit cell; the alkane segments exist in a mobile phase and equivalent hydrogen bonds populate the three principal (hexagonal) directions. A structure with perturbed hexagonal symmetry, which bears a resemblance to the reported γ-phase for nylons, can be obtained by quenching from the crystalline growth phase (above TB) to room temperature. We propose that this structure is a “quenched-in” perturbed form of the nylon 6 9 high-temperature hexagonal phase and has interchain hydrogen bonds in all three principal crystallographic directions. In this respect it differs importantly from the γ-phase models. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1153-1165, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1557-1566 
    ISSN: 0887-6266
    Keywords: polyesters ; PET ; PEN ; PEI ; 13C NMR ; dynamics ; nuclear relaxation times ; gas diffusion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dynamics of amorphous aromatic polyesters consisting of poly(ethylene terephthalate) (PET), poly(ethylene isophthalate) (PEI), and poly(ethylene 2,6-naphthalenedicarboxylate) (PEN) has been investigated by means of solid state CPMAS 13C NMR. Proton T2, 13C T1ρ, and proton T1ρ decays have been measured in particular, and the experimental data fitted to suitable model functions to determine best relaxation parameters. The fitting results show for proton T2 and 13C T1ρ measurements the presence of two components with different relaxation times and intensities, arising from different motional domains. The proton T1ρ, on the contrary, shows a single component which limits the dimensions of the two regions to less than 20 Angstroms. The dependence of 13C T1ρ values on two different irradiating field strengths (H1 = 38 KHz, H1 = 60 KHz) allowed the assignment of each component to relatively rigid and mobile regions. By comparing the three polymers we observe that PEN and PEI have a similar relaxation behavior, while a higher fraction of mobile components was found for PET. These differences are believed to arise mainly from local motions of the aromatic rings. The relaxation measurements have been evaluated to suggest a correspondence to O2 and CO2 gas permeabilities in PET, PEI, and PEN. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1557-1566, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2165-2175 
    ISSN: 0887-6266
    Keywords: temperature-modulated differential scanning calorimetry ; DSC ; heat capacity ; glass transition ; thermal relaxation ; polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The glass transition can be measured at different experimental conditions. Using spectroscopic methods at relative high frequency the α-relaxation is measured in the thermodynamic equilibrium. In the caloric case we call this phenomenon thermal relaxation transition (TRT). With a conventional differential scanning calorimeter (DSC) the transition of the equilibrium (the melt) into a nonequilibrium (the glassy state) is measured. This effect is called thermal glass transition (TGT). In contrast to the TGT, the TRT can be described using the linear response approach. The temperature-modulated differential scanning calorimetry (TMDSC) technique superimposes a periodical temperature perturbation upon the constant scanning rate of conventional DSC. This technique combines a spectroscopic method with a linear temperature scan. Both the TGT and the TRT are measured simultaneous. Because the frequencies are relatively low in a TMDSC experiment, the temperature ranges of both transitions overlap. In this case, the experimental results show an influence of the TGT on the TRT. The reason of that is the deviation from the nonequilibrium. In this case, the fictive temperature is different from the external temperature. This effect can be described by means of a Tool-Narayanaswamy-Moynihan model for the TGT. Based on this model, a description of the complex heat capacity close to the thermal glass transition is shown. The influence of the beginning freezing-in process on the thermal relaxation is characterized by the fictive temperature. Using the presented description, a quantitative calculation of the nonlinear effects in the thermal relaxation is possible. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2165-2175, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2177-2189 
    ISSN: 0887-6266
    Keywords: yield ; polyethylene ; stem length ; crystal plasticity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The yield stress behavior of a range of polyethylene materials which differ with respect to their short chain branch content has been studied. Measurements carried out over a wide range of temperatures have shown that there is a sudden transition in the behavior of the yield stress at a temperature which is dependent on both the grade of material and the applied strain rate. These results are in agreement with previous results found from analysis of the yield strain behavior.Above the transition temperature the materials all behave in a nonlinear viscoelastic manner, and the yield process is considered as being propagation controlled. Below the transition temperature the materials all behave in an elastic-plastic manner, and the yield process is considered as being nucleation controlled. Below the transition temperature the temperature dependence of the yield stress is determined by the thickness of the crystalline lamellae. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2177-2189, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2225-2235 
    ISSN: 0887-6266
    Keywords: PEEK ; composite ; stability ; nonisothermal ; crystallinity ; melting ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225-2235, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2513-2523 
    ISSN: 0887-6266
    Keywords: block copolymer ; thermoplastic elastomer ; physical gel ; order-disorder transition ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thermoplastic elastomer gels (TPEGs) composed of a poly[styrene-b-(ethylene-co-butylene)-b-styrene] triblock copolymer and a low-volatility, midblock-compatible mineral oil have been investigated here to ascertain the effects of composition on TPEG morphology, and temperature on mechanical properties. Cryofracture-replication transmission electron micrographs reveal the existence of spheroidal bumps due to copolymer micelles, as well as a network of irregularly shaped, high-aspect-ratio features. Since the density of this network decreases with increasing oil concentration, these features are attributed to copolymer grain boundaries. Micellar periodicities are discerned from small-angle X-ray scattering as a function of copolymer concentration and compared with previously reported data from related systems. Dynamic rheological tests performed up to 140°C indicate that the linear viscoelastic regime for these TPEGs decreases with both increasing copolymer concentration and temperature. A concentration-dependent thermal transition, signified by an abrupt reduction in the dynamic elastic modulus (G′), has also been identified.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2513-2523, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2949-2959 
    ISSN: 0887-6266
    Keywords: ultrasound ; crystallization kinetics ; film formation ; polychloroprene ; shear modulus ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We report the application of an ultrasonic shear wave reflection technique for the investigation of film formation and crystallization kinetics of one amorphous and two semicrystalline polychloroprene samples with different gel content. Both isothermal and temperature-dependent measurements of the complex dynamic shear modulus (G* = G′ + iG″) have been performed at a frequency of 5.32 MHz. The process of film formation during the evaporation of water is expressed by a stepwise increase of the shear modulus. For the semicrystalline samples a further increase, which is due to crystallization, can be observed. Film formation and crystallization are delayed for the sample with high gel content and its minor final modulus is explained by a lower degree of crystallinity. The time-dependent increase of the shear modulus due to the growth of spherulites has been analyzed by the Avrami equation combined with the Kerner model for the modulus of a two-phase composite (spherulites in an amorphous matrix). The dynamic shear modulus for the spherulites has been estimated by a model introduced by Halpin and Kardos. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2949-2959, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2981-3000 
    ISSN: 0887-6266
    Keywords: sorption ; diffusion ; acetone ; poly(ethylene terephthalate) ; poly(ethylene 2,6-naphthalate) ; copolymers ; positron annihilation lifetime spectroscopy ; infrared spectroscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Random copolymers of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalate) (PEN) were synthesized by melt condensation. In a series of thin, solvent cast films of varying PEN content, acetone diffusivity and solubility were determined at 35°C and an acetone pressure of 5.4 cm Hg. The kinetics of acetone sorption in the copolymer films are well described by a Fickian model. Both solubility and diffusivity decrease with increasing PEN content. The acetone diffusion coefficient decreases 93% from PET to PET/85PEN, a copolymer in which 85 weight percent of the dimethyl terephthalate in PET has been replace by dimethyl naphthalate 2,6-dicarboxylate. The acetone solubility coefficient in the amorphous regions of the polymer decreases by approximately a factor of two over the same composition range. The glass/rubber transition temperatures of these materials rise monotonically with increasing PEN content. Copolymers containing 20 to 80 wt % PEN are amorphous. Samples with 〈20% or 〉80% PEN contain measurable levels of crystallinity. Estimated fractional free volume in the amorphous regions of these samples is lower in the copolymers than in either of the homopolymers. Relative free volume as probed by positron annihilation lifetime spectroscopy (PALS) decreases systematically with increasing PEN content. Acetone diffusion coefficients correlate well with PALS results. Infrared spectroscopy suggests an increase in the fraction of ethylene glycol units in the trans conformation in the amorphous phase as the concentration of PEN in the copolymer increases. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2981-3000, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3035-3048 
    ISSN: 0887-6266
    Keywords: epoxy ; absorption ; water ; positron annihilation lifetime spectroscopy ; free volume ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Epoxy resins absorb significant quantities of moisture, typically 1 to 7% by weight for various formulations, which can greatly compromise their physical properties. It is known that polarity of the epoxy is a significant factor in determining the ultimate moisture uptake. However, the contribution from molecular topology still remains vague. In this work, the effects of molecular topology are elucidated by synthesizing novel epoxies where the polarity is maintained constant but the topology is systematically altered. The molecular topology is quantified in part via Positron Annihilation Lifetime Spectroscopy (PALS) in terms of the nanometer-sized voids, or nanovoids, that are also commensurate with typical interchain distances. The nanovoids are separated into their absolute zero and thermally fluctuating fractions by performing PALS measurements over a wide range of temperatures. A strong correlation is observed between the absolute zero hole volume fraction and the ultimate moisture uptake. Although the correlation is clear, the absolute zero hole volume fraction alone is not sufficient to predict the ultimate moisture uptake, and network polarity must also be considered. It is surmised that the role of the nanovoids is to open the epoxy matrix and alleviate steric hindrances that may prevent a water molecule from associating with a polar group. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3035-3048, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3079-3086 
    ISSN: 0887-6266
    Keywords: diffusion ; block copolymer ; monomeric friction factor ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Monomeric friction factors, Ξ, for polystyrene (PS), polyisoprene (PI), and a polystyrene-polyisoprene (SI) diblock copolymer have been determined as a function of temperature in four poly(styrene-b-isoprene-b-styrene-b-isoprene) tetrablock copolymer matrices. The Rouse model has been used to calculate the friction factors from tracer diffusion coefficients measured by forced Rayleigh scattering. Within the experimental temperature range the tetrablock copolymers are disordered, allowing for measurement of the diffusion coefficient in matrices with average compositions determined by the tetrablock copolymers (23, 42, 60, and 80% styrene by volume). Remarkably, for a given matrix composition the styrene and isoprene friction factors are essentially equivalent. Furthermore, at a constant interval from the system glass transition temperature, Tg, all of the friction factors (obtained from homopolymer, diblock copolymer, and tetrablock copolymer dynamics) agree to within an order of magnitude. This is in marked contrast to results for miscible polymer blends, where the individual components generally have distinct composition dependences and magnitudes at constant T - Tg. The homopolymer friction factors in the tetrablock matrices were systematically slightly higher than those of the diblock, which in turn were slightly higher than those of the homopolymers in their respective melts, when all compared at constant T - Tg. This is attributed to the local spatial distribution of styrene and isoprene segments in the tetrablocks, which presents a nonuniform free energy surface to the tracer molecules. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3079-3086, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3087-3100 
    ISSN: 0887-6266
    Keywords: polymer dynamics ; light scattering spectroscopy ; probe diffusion ; coupling model ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We studied translational diffusion of dilute monodisperse spheres (diameters 14 〈 d 〈 455 nm) in aqueous 1 MDa hydroxypropylcellulose (0 ≤ c ≤ 7 g/L) at 25°C using quasielastic light scattering. Spectra are highly bimodal. The two spectral modes (“slow,” “fast”) have different physical properties. Probe behavior differs between small (d 〈 Rh) and large (d ≥ Rg) probes; Rh and Rg are the matrix polymer hydrodynamic radius and the radius of gyration, respectively. We examined the dependences of spectral lineshape parameters on d, c, scattering vector q, and viscosity η for all four probe-size and mode-type combinations. We find three time scale-separated modes: (1) a large-probe slow mode has properties characteristic of particle motion in a viscous medium; (2) a large-probe fast mode and small-probe slow modes share the same time scale, and have properties characteristic of probe motion coupled to internal chain dynamics; and (3) a small-probe fast mode has properties that can be attributed to the probe sampling local chain relaxations. In the analysis, we also attempted to apply the coupling/scaling (CS) model of Ngai and Phillies [Ngai, K. L., Phillies, G. D. J. J. Chem. Phys., 105, 8385 (1996)] to analyze our data. We find that the second mode is described by the coupling/scaling model for probe diffusion; the first and third modes do not follow the predictions of this model. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3087-3100, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3137-3145 
    ISSN: 0887-6266
    Keywords: X-ray analysis ; copoly(ester-imide) ; thermotropic liquid crystalline polymers ; random copolymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The structure of a thermotropic liquid crystalline copoly(ester-imide) prepared from p-hydroxybenzoic acid (48 mol %), 4,4′-dihydroxybenzophenone (26 mol %), and N,N′-bis(trimellitimide)hexane (26 mol %) has been investigated by X-ray diffraction. X-ray fiber diagrams of as-spun and annealed fibers contain a series of aperiodic layer lines reminiscent of those seen for fibers of other copolymers that have extended chain conformations and completely random monomer sequences. The positions of these layer lines were reproduced approximately in simulation of the X-ray scattering by a fully extended chain of completely random sequence, and the match was improved to within experimental error when we considered a stereochemically acceptable sinuous chain. This agreement was lost when the sequence statistics deviated were completely random. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3137-3145, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2339-2348 
    ISSN: 0887-6266
    Keywords: epoxy ; curing ; generating function ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The systems of diepoxides cured with primary amine in presence of an monoepoxide, monofunctional reactive, under equal stoichiometric ratio has been analyzed by a generating function method. The average degree of polymerization, which changed with time or conversion, and gel point were calculated. The profiles of the degree of polymerization and critical conversion are dependent on the content of and relative reactivities of epoxy groups. For a system with the same ratio, the critical epoxy conversion increases with increasing reactivity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2339-2348, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2371-2378 
    ISSN: 0887-6266
    Keywords: liquid crystalline ; polymers ; X-ray diffraction ; fibers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The synthesis and a partial characterization of segmented liquid crystalline polymers with 3,3′-diallyl-4,4′-dihydroxybiphenyl unit in the rigid moiety is reported. The general formula of polymers is [-p-C6H4-COO-p-C6H3(R)-p-C6H3(R)-OOC-p-C6H4-O-(CH2)nO-]x, with n = 6, 8, 10, 12, and R = —CH2—CH=CH2. All polymers have nematic liquid-crystalline behavior. At room temperature, annealed fiber samples of polymers show a complex polymorphism. Three phases have been isolated with very large unit cells accommodating 6 or 12 chains. The projection of the molecular packing in a plane perpendicular to the c axis is characterized by the organization of chains in a two-dimensional hexagonal or quasi-hexagonal array. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2371-2378, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2413-2421 
    ISSN: 0887-6266
    Keywords: positron annihilation ; polyimide ; ion implantation ; membrane ; permeability ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: 6FDA-pMDA polyimide membranes were implanted with 140 keV N+ ions to fluences between 2 × 1014 and 5 × 1015 cm-2. Variable energy positron annihilation spectra were taken and spectral features compared to previously reported changes in gas permeability and permselectivity of these membranes as a function of ion fluence. Positron data corroborate the explanation of these changes in terms of molecular damage caused by the implant: for fluences up to about 1 × 1015 cm-2, the concentration of irradiation-induced defects merely increases with implant fluence; while fluences exceeding this threshold value create a second type of positron annihilation site, thereby marking a distinct change in the structure of the polymer, which is responsible for the vast improvement of gas permselectivity data found at the same threshold fluence. PACS codes: 78.70.Bj - positron annihilation; 61.82.Pv - polymers, organic compounds; 61.72.Ww - doping and impurity implantation. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2413-2421, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3127-3136 
    ISSN: 0887-6266
    Keywords: block copolymers ; thin films ; patterned surfaces ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We present results from a numerical study of a coarse-grained model of diblock copolymer (BCP) thin films cast on a chemically patterned surface. The patterned surface contains chemical inhomogeneities with a repeat spacing length scale comparable to the linear size of the BCP molecules. We find that the orientation of the lamellae in the thin film and the overlap of the film morphology with the preassigned surface pattern is strongly influenced by the commensurability between the bulk unconstrained lamellar size λ*, and the linear size of the surface inhomogeneities w. PACS Numbers: 64.60.Cn, 61.41.+e, 64.60.My, 64.75.+g. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3127-3136, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2677-2681 
    ISSN: 0887-6266
    Keywords: sulfonated SEBS ; viscosity property ; molecular aggregation ; freezing-thawing treatment ; shear-thickening ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dilute solution properties of lightly sulfonated hydrogenated styrene-butadiene-styrene block copolymer (S-SEBS) dissolved in tetrahydrofunan (THF) were studied by viscometry. The ring conformation in dilute regime can be deduced from the intrinsic viscosity data. It is believed that this special conformation results from the location of ionic group at both two-end blocks. The intermolecular aggregation can be observed when the solutions undergo the freezing-thawing process in the same concentration region. The extent of aggregation is affected by the freezing-thawing cycle times, water content in THF, and the counterion radii, etc. The properties of the aggregation equilibrium are also discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2677-2681, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2703-2716 
    ISSN: 0887-6266
    Keywords: calorimetry ; dielectrics ; diffusion ; monoamine-triepoxide ; thermoset ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Calorimetry and dielectric relaxation spectroscopy during the growth of a polymer network in the stoichiometric mixture of a triepoxide with 4-chloroaniline have been performed in separate experiments to investigate the increase in the relaxation time with the number of covalent bonds. A comparison with the corresponding study of triepoxide-aniline and triepoxide-3-chloroaniline mixtures shows that steric hindrance of the amine group by chlorine slows the molecular dynamics and the relaxation time of the state containing a fixed number of bonds. The polymerization kinetics measured during ramp heating does not yield a reliable activation energy. A recent empirical relation between the relaxation time and the extent of polymerization, and the condition for the onset of diffusion-control kinetics have been examined using the data for these three polymerizing mixtures. The results show substantial deviations from the empirical relation and appear to conflict with our basic understanding of the polymerization process. It is shown mathematically that features attributed to the onset of diffusion-controlled kinetics can arise from thermochemical behavior alone, without reference to the molecular dynamics. An earlier theory for the change in the kinetics of an addition reaction from mass control to diffusion control has been considered, and is seen as relevant to the polymerization reactions. It is argued that the dielectric relaxation rate does not directly indicate the chemical reaction rate because the reorientational motion of the dipolar entities may not be coupled to the rotational and translational diffusion that brings the sterically hindered chemically reacting sites together. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2703-2716, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1-9 
    ISSN: 0887-6266
    Keywords: small-angle neutron scattering ; SANS ; polystyrene ; polyvinylmethylether ; radius of gyration ; Zimm analysis ; random phase approximation ; phase diagram ; polymer blends ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Small-angle neutron scattering was used to measure the radius of gyration and thermodynamics of blends of poly(vinylmethylether) (PVME) at dilute concentration in deuterated polystyrene (PSD). The data were analyzed using the Zimm equation and the random phase approximation theory. For PVME with a weight-average molecular weight of 38,400 the value of the radius of gyration, Rg, was found to be 47 Å in the limit of the concentration of PVME extrapolated to zero. Analysis of the temperature dependence of the Flory interaction parameter, χ/v0, indicates that phase separation should occur at approximately 300°C for a sample with φPVME ≅ 9%. No significant temperature dependence of Rg was found over the experimental range studied. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1-9, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    ISSN: 0887-6266
    Keywords: liquid crystal ; block copolymer ; polyester block ; polymethacrylate block ; magnetic field ; X-ray diffraction ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phase and orientational behaviors of a series of liquid crystalline (LC) AB-type diblock copolymers comprising thermotropic main-chain (MC) polyester and side-group (SG) polymethacrylate blocks were investigated by X-ray diffraction. The MC and SG blocks were phase separated and gave rise to their individual mesophases that coexisted at equilibrium. The samples were oriented by using either a magnetic field or a mechanical field. In magnetically aligned samples both the MC and SG microphases were oriented with their smectic planes orthogonal to the magnetic field direction, independent of the copolymer composition. Mechanically aligned, fiber samples showed different orientations of the MC and SG smectic planes for different sample compositions. In this case the disposition of the smectic planes of the MC and SG blocks was driven by the relative length of the two blocks. Some features of the X-ray patterns of the copolymers were compared to those of the MC and SG homopolymers. In addition, the MC smectic domains crystallized on annealing without affecting the orientation that had been achieved by applying a magnetic field. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 21-29, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 49-54 
    ISSN: 0887-6266
    Keywords: substituted poly(paraphenylene) ; phase transitions ; synchrotron radiation ; mesophases ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal behavior of poly(para-2,5-didecyl-p-phenylene) has been investigated by differential scanning calorimetry and real time X-ray diffraction. Poly(para-2,5-didecyl-p-phenylene) is a semicrystalline material that crystallizes in a layered structure. The system exhibits two thermal transitions in the investigated temperature range. The first one, occurring at lower temperatures, provokes a reduction of the layered spacing accompanied by an appreciable disordering of the lateral side chains. Above the first transition the material is shearable, highly viscous, and birefringent. Thus, we have associated this transition to the formation of a layered mesophase. The higher temperature transition exhibits a twofold endothermic DSC peak and is characterized by the disappearance of X-ray diffracted intensity. At temperatures above the second transition the system presents the characteristics of an isotropic melt. Consequently, we have associated this transition with the complete disordering of the polymeric backbones. By following an appropriate thermal treatment it has been shown that the twofold shape of the endotherm characterizing the higher temperature transition can be changed into a single endotherm. This effect has been interpreted as being due to the kinetics of main-chain ordering. This ordering seems to proceed by the initial growth of domains with a high level of order followed by the subsequent increase of these domains through the inclusion of less ordered material. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 49-54, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 85-93 
    ISSN: 0887-6266
    Keywords: polybutadiene ; poly(methyl methacrylate) ; poly(butadiene-block-methyl methacrylate) ; compatibilization ; micelle ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 85-93, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 113-126 
    ISSN: 0887-6266
    Keywords: enthalpy relaxation ; physical aging ; DSC ; glassy state ; thermoplastic polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The enthalpy relaxation of a series of linear amorphous polyesters (poly(propylene isophthalate) (PPIP), poly(propylene terephthalate) (PPTP), poly(ethylene terephthalate) (PETP), and poly(dipropylene terephthalate) (PDPT)) has been investigated by differential scanning calorimetry (DSC). These polyesters have been annealed at equal undercooling below their respective glass transition temperatures, Tg, (Tg - 27°C, Tg - 15°C, and Tg - 9°C) for periods of time from 15 min to 480 h. The key parameters of structural relaxation, namely the apparent activation energy (Δh*), the nonlinearity parameter (x) and the nonexponentiality parameter (β), have been determined for each polyester and related to an effective relaxation rate (1/τeff) and to the chemical structure. We observe that the variation of the structural relaxation parameters shows a trend that is common to other polymeric systems, whereby an increase of x and β corresponds a decrease in Δh*. The comparison of these parameters in PETP and in PPTP gives information about the effect of the introduction of a methyl group pendant from the main chain; the x parameter increases (i.e., a reduced contribution of the structure to the relaxation times), β increases (i.e., a narrow distribution of relaxation times), and Δh* decreases. Additionally, enthalpy relaxation experiments show that a decrease of Δh* correlates with an increase of 1/τeff, when they are measured at a fixed value of the excess enthalpy, δH. The introduction of an isopropyl ether group in PDPT with respect to PPTP decreases both x and β, but increases Δh*, which the rate of relaxation decreases. The ring substitution in PPTP and PPIP originates less significant changes in the structural parameters. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 113-126, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 163-169 
    ISSN: 0887-6266
    Keywords: acetone ; poly(ethylene terephthalate) ; mass transport ; solvent-induced crystallites ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The acetone transport in poly(ethylene terephthalate) (PET) and related phenomena was investigated. Based on Harmon's model for Case I, Case II, and the anomalous transport, we analyzed the data of mass uptake. The diffusivity for Case I and the velocity for Case II satisfied the Arrhenius plot. It was found that the solvent moves from outer surfaces to the center according to Case I kinetics, and there is movement in the opposite direction according to Case II kinetics during the mass uptake. This result indicated that pure Case II behavior did not appear in the PET-acetone system. The saturated amount of acetone in PET satisfied the van't Hoff plot. X-ray diffraction pattern and DSC curve showed solvent-induced crystallites and thermal crystallites. The results of density measurement explained the difference of the sorption kinetics between the acetone-treated PET crystallites and thermally treated PET. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 163-169, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 617-627 
    ISSN: 0887-6266
    Keywords: isotactic polypropylene foams ; supercritical propane solutions ; high surface areas ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Crystallization of isotactic polypropylene (iPP) from homogeneous solution in supercritical propane yields open-cell foams of high surface area (120-150 m2/g). Their morphology usually consists of microspheres with a dense core and a porous periphery of radiating fibrils. Pore radii covering the mesopore range (2-50 nm), making their largest contribution at 10-20 nm, were calculated from nitrogen adsorption isotherms. Surface areas of the correct order of magnitude are obtained by assuming that gas adsorption takes place on the surfaces of lamellar crystals. Crystallization of iPP from n-butane and n-heptane generates foams of lower mesoporosity and smaller surface area. These more “liquid-like” solvents do not allow the formation of an open network of mesopores or they promote its collapse upon their removal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 617-627, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 693-703 
    ISSN: 0887-6266
    Keywords: phase separation ; NMR spectroscopy ; block copolymers ; reaction injection molding ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The microphase separation (MPS) in polyureas based on methylene diphenyl diisocyanate (MDI) hard segment, diethyltoluenediamine chain extender, and amino-terminated polypropylene glycol soft segment prepared by reaction injection molding (RIM) was studied by advanced solid-state NMR spectroscopy. Incomplete microphase separation leads to the presence of mobilized hard segments dispersed in the soft segment domains as well as immobilized soft segments residing in the hard domains. This is detected by 1H-NMR spectra recorded under spinning at the magic angle (MAS) as well as two-dimensional wide-line separation (WISE) NMR spectra. The sizes of the various domains as well as the interfaces between them are quantified by spin diffusion measurements. In this way the impact of annealing, method of polymerization, and hard segment content on MPS is studied. Whereas annealing at temperatures up to 170°C results in improving the MPS, major changes are observed after annealing at higher temperatures (190°C), where the system changes from “soft-in-hard” to “hard-in-soft” behavior. The MPS decreases with increasing hard segment content. The highest MPS is observed for solution polymerized samples. The various NMR experiments clearly reveal the nonequilibrium nature of RIM systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 693-703, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 743-753 
    ISSN: 0887-6266
    Keywords: polyacrylamides ; specific viscosity ; polyelectrolyte solutions ; light scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dependences of the specific viscosity of several polyelectrolytes on polyelectrolyte concentration, salt concentration or solution ionic strength, solution pH value, solvent quality, and solution temperature were systematically investigated. We found that the specific viscosity obeys a more general relation: ηsp = Acp2/(cp + 2cs)3/2 + B, where ηsp is the polyelectrolyte specific viscosity, cp and cs are polymer and salt concentrations, respectively. The prefactor A depends critically on chain size, solvent quality, and temperature in qualitative agreement with the theory proposed by Rabin et al. The intercept B is nonzero or less than zero in polyelectrolyte solutions with low ionic strength. When a sufficient amount of salt has been added, B is reduced to zero and we recover the Rabin et al.'s relation. The physical interpretation for the intercept B is that it represents the inverse of the strength of electrostatic interaction between a polyion and counterions, in quantitative agreement with the well-known emperical Fuoss's relation. Furthermore, the existence of nonzero B allows us to calculate the condition for the maximum in the reduced viscosity-polymer concentration curve in a polyelectrolyte solution system without salt. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 743-753, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 789-795 
    ISSN: 0887-6266
    Keywords: in situ polymerization ; nanocomposite ; toughness ; nylon 6 ; silica ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A novel method, in situ polymerization, was used for the preparation of nylon 6/silica nanocomposites, and the mechanical properties of the nanocomposites were examined. The results showed that the tensile strength, elongation at break, and impact strength of silica-modified nanocomposites exhibited a tendency of up and down with the silica content increasing, while those of silica-unmodified nanocomposites decreased gradually. It also exhibited that the mechanical properties of silica-modified nanocomposites have maximum values only when 5% silica particles were filled. Based on the relationship between impact strength of the nanocomposites and the matrix ligament thickness τ, a new criterion was proposed to explain the unique mechanical properties of nylon 6/silica nanocomposites. The nylon 6/silica nanocomposites can be toughened only when the matrix ligament thickness is less than τc and greater than τa, where τa is the matrix ligament thickness when silica particles begin to aggregate, and τc is the critical matrix ligament thickness when silica particles begin to toughen the nylon 6 matrix. The matrix ligament thickness, τ, is not independent, which related with the volume fraction of the inorganic component because the diameter of inorganic particles remains constant during processing. According to the observation of Electron Scanning Microscope (SEM), the process of dispersion to aggregation of silica particles in the nylon 6 matrix with increasing of the silica content was observed, and this result strongly supported our proposal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 789-795, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 827-840 
    ISSN: 0887-6266
    Keywords: polyimides ; imidization ; perylenetetracarboxydiimide ; electron transfer ; fluorescence quenching ; polyimide blends ; miscibility ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Perylenetetracarboxydiimide (PEDI) molecularly dispersed in polyamic acid (PAA) and polyimide (PI) films has unique fluorescence properties. An originally strong fluorescence of PEDI is efficiently quenched in the PAA films. The systematic variation of the chain structure of the PAA matrices revealed that the aromatic amide groups in the PAA chains function as a quencher. When a PAA derived from 3,4,3′4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA), BPDA/PDA, was used as a matrix polymer, the fluorescence of the dye dispersed in the film increased abruptly as imidization of the matrix proceeds. But annealing at temperatures higher than 320°C in the step-heating process caused a gradual decrease in the fluorescence intensity. The decreased intensity results from the dye-PDA units interactions intensified by the denser molecular packing of the matrix polymer chains. PEDI shows significant dependence of the fluorescence intensity on the chain structure of the PI matrices. In the various PI films containing a fixed diamine component, the dye fluorescence intensity reduces linearly with an increase in the intramolecular charge transfer ability of the PI matrices. From the result, we propose a fluorescence quenching mechanism through multistep electron transfer processes. The BPDA/PDA polyimide matrix leads to a strong PEDI fluorescence whereas the pyromellitic dianhydride (PMDA)-based PI matrices do not. For the blends composed of these PIs, the fluorescence of PEDI bound into the main chains provides a valuable indicator of the miscibility on the molecular level. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 827-840, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1275-1281 
    ISSN: 0887-6266
    Keywords: chitosan ; polyethylene glycol polyblend ; intermolecular interaction ; viscometry ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The molecular structures of polyethylene glycol (PEG) and chitosan (CS) are illustrated as follows: 1CS2PEG\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm HO} \hbox{--} {\rm CH}_2 {\rm CH}_2 \rlap{--} ({\rm O} \hbox{--} {\rm CH}_2 {\rm CH}_2 \rlap{--} {\rm O} \hbox{--} {\rm CH}_2 {\rm CH}_2 \hbox{--} {\rm OH} $$\end{document} The intermolecular interactions between these two polymers were studied by viscometry with a thermodynamic parameter α, which was first proposed by Sun et al. The weight additive rule of the intrinsic viscosity of polyblend relating to the values of each polymeric constituent was attested to with PEG/CS polyblend. The calculation formula of Huggins coefficient for polyblend, km, was theoretically deduced, and a very simple expression of α was obtained. First, the values of α for PEG/CS blends with different PEG molecular weight were estimated from the experimental viscosity data of the polyblends with different mixed ratio. According to these values of α, it can be predicted that an attractive interaction exists between the molecule of PEG and that of CS. Second, the viscosity of CS was measured in pseudo-solvents (PEG dissolved in 0.01N sodium chloride aqueous solution) with different PEG concentrations. From these viscosity data, the values of cross Huggins coefficient are calculated to be all larger than the values of the Huggins coefficient both for CS and for PEG. On the revised α criterion, the dissimilar molecular interaction in PEG/CS polyblend is demonstrated to be attractive too. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1275-1281, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1313-1320 
    ISSN: 0887-6266
    Keywords: swelling ; polyacrylamide gels ; swelling in polymer solutions ; polymer-polymer interaction parameter ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Swelling behavior of polyacrylamide (PAAm) and polyacrylamide-co-polyacrylic acid (PAAm-co-PAAc) gels was investigated in aqueous solutions of monodisperse PAAms with molecular weights (Mw) ranging from 1.5 × 103 to 5 × 106 g/mol. The volume of the gels decreases as the PAAm concentration in the external solution increases. This decrease becomes more pronounced as the molecular weight of PAAm increases. The classical Flory-Huggins (FH) theory correctly predicts the swelling behavior of nonionic PAAm gels in PAAm solutions. The polymer-polymer interaction parameter χ23 was found to decrease as the molecular weight of PAAm increases. The swelling behavior of PAAm-co-PAAc gels in PAAm solutions deviates from the predictions of the FH theory. This is probably due to the change of the ionization degree of AAc units depending on the polymer concentration in the external solution. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1313-1320, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1349-1359 
    ISSN: 0887-6266
    Keywords: reaction-induced phase separation ; polysulfone-epoxy blends ; epoxy-anhydride networks ; polysulfone-modified epoxies ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The reaction-induced phase separation in a blend of a commercial polysulfone (PSu) with diepoxide-cyclic anhydride monomers, was studied. The diepoxide was based on diglycidylether of bisphenol A (DGEBA) and the hardener was methyl tetrahydrophthalic anhydride (MTHPA), used in stoichiometric proportion. Benzyldimethylamine (BDMA) was used as initiator. PSu had no influence on the polymerization kinetics, the gel conversion, and the overall heat of reaction per epoxy equivalent. A kinetic model including initiation, propagation, and termination steps was used to estimate the distribution of linear and branched species in the first stages of the chain-wise copolymerization. This distribution, together with the PSu distribution, were taken into account in a thermodynamic model of the blend. The interaction parameter was fitted from experimental determinations of conversions at the start of phase separation, obtained under different conditions. The thermodynamic model was used to explain the complex morphologies developed in materials containing different PSu concentrations as well as their dynamic mechanical response. The shift in glass transition temperatures was explained by the fractionation of different species during the phase separation process. Phase inversion produced a significant decrease of the elastic modulus in the glassy state and a thermoplastic-like behavior of the material in the rubbery region. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1349-1359, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1371-1382 
    ISSN: 0887-6266
    Keywords: epoxy resins ; thermosets ; glass transition ; yield behavior ; fracture toughness ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of crosslink functionality (fc), molecular weight between crosslinks (Mc), and chain stiffness display on the thermal and mechanical behavior of epoxy networks are determined. Both fc and Mc are controlled by blending different functionality amines with a difunctional epoxy resin. Chain stiffness is controlled by changing the chemical structure of the various amines. In agreement with rubber elasticity theory, the rubbery moduli are dependent on fc and Mc, but independent of chain stiffness. The glassy moduli and secondary relaxations of these networks are relatively independent of fc, Mc, and chain stiffness. However, the glass transition temperatures (Tg) of these networks are dependent on all three structural variables. This trend is consistent with free volume theory and entropic theories of Tg. fc, Mc, and chain stiffness control the yield strength of these networks in a manner similar to that of Tg and is the result that both properties involve flow or relaxation processes. Fracture toughness, as measured by the critical stress intensity factor (KIc), revealed that fc and Mc are both critical parameters. The fracture behavior is the result of the fracture toughness being controlled by the ability of the network to yield in front of the crack tip. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1371-1382, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1805-1819 
    ISSN: 0887-6266
    Keywords: polymer blend ; PA6 ; PPE ; epoxy ; reactive compatibilizer ; coupling agent ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A tetrafunctional epoxy monomer, N,N,N′-N′-tetraglycidyl-4,4′-diaminodiphenyl methane (TGDDM), has demonstrated to be a highly efficient reactive compatibilizer in compatibilizing the immiscible and incompatible polymer blends of polyamide-6 (PA6) and poly(2,6-dimethyl-1,4-phenylene ether) (PPE). This epoxy coupler can react with both PA6 and PPE to form various PA6-co-TGDDM-co-PPE mixed copolymers. These interfacially formed PA6-co-TGDDM-co-PPE copolymers tend to anchor along the interface to reduce the interfacial tension and result in finer phase domains and enhanced interfacial adhesion. A simple one-step melt blending has demonstrated to be more efficient in producing a better compatibilized PA6/PPE blend than a two-step sequential blending. The mechanical property improvement of the compatibilized blend over the uncompatibilized counterpart is very drastic, by considering the addition of a very small amount, a few fractions of 1%, of this epoxy coupling agent. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1805-1819, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1847-1856 
    ISSN: 0887-6266
    Keywords: electrical transport ; dielectric properties ; barium titanate ; carbon black ; epoxy resin ; relaxation processes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Conductivity and dielectric constant of a three-component 0-3 composite of epoxy resin-barium titanate-carbon black (0-3 composites are systems in which the filler is in the form of 0-dimensional (point-like, disperse) particles in a three-dimensional polymeric matrix1) have been investigated both at DC and the frequency range of 20-106 c/s. The effect of barium titanate concentration on percolation threshold, critical indices and the mechanism of conduction has been examined. An attempt was made to describe the electrical properties of composites with models originally developed for two-component systems' dielectric-conductor. With increasing barium titanate concentration the agreement of experimentally found frequency dependencies of conductivity and dielectric constant with models based on Debye's equation was found to degrade. An adequate description of electrical properties of composites' dielectric-ferroelectric-conductor should be based on the Havriliak-Negami equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1847-1856, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1889-1899 
    ISSN: 0887-6266
    Keywords: polymer ; blend ; cocontinuity ; phase inversion ; interface ; morphology ; elasticity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this work the level of continuity and cocontinuity for blends of HDPE/PS prepared on a twin-screw extruder have been studied by both morphology and dissolution studies. Addition of SEBS as an interfacial modifier results in a shift of the percolation threshold for dispersed PS to higher concentrations. The region of phase inversion, however, is maintained at 70% PS. The shift in the percolation threshold to higher values is related to reduced elongation of the PS dispersed phase after interfacial compatibilization. These results indicate that an interfacial modifier significantly influences percolation phenomena without shifting the region of phase inversion. Models based on viscosity ratio have failed to predict the region of phase inversion in this study. Elastic effects are shown to be able to describe the basic tendencies. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1889-1899, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1927-1934 
    ISSN: 0887-6266
    Keywords: side chain liquid crystal polymers ; β-relaxation ; rotation of mesogenic units ; compensation law ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A strong dependence of the rotational dynamics of the mesogenic units (β-relaxation) on the order of the mesophase was found in sidechain liquid crystal polymers. The preexponential frequency factor, \documentclass{article}\pagestyle{empty}\begin{document}$ f_{\beta \infty }^* $\end{document} and the activation energy \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm E}_{\alpha \beta }^{\rm *} $\end{document} of the β-relaxation rate both increase significantly (i.e., obeying a compensation law) with increasing order of the mesophase which is accompanied by a decrease of the mean lateral mesogenic distance. In this work, we show how these experimental results can be interpreted in a quantitative manner by using the general results of the coupling model for cooperative motions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1927-1934, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2005-2013 
    ISSN: 0887-6266
    Keywords: sphere doublets ; light scattering ; suspension ; flow ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The polarized or depolarized light scattering by well-defined monodispersed sphere doublets is investigated. Two configurations of doublets are studied. In the first (at rest) the doublets are randomly oriented in a plane, in the second the doublets are oriented in a preferred direction. This is achieved by submitting a suspension of doublets to a shear flow. The scattering patterns are compared to two theoretical predictions based on simplified geometries. In the first approach, the doublet is approximated by two interpenetrating spheres scattering independently, whereas in the second, an ellipsoid geometry is used. A good qualitative comparison is obtained. However, the HV and VH patterns of a randomly dispersed suspension are not similar. The observation of the flow of a doublet suspension in shear shows that the doublets are spiraling around the vorticity axis. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2005-2013, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2461-2470 
    ISSN: 0887-6266
    Keywords: dielectric relaxation spectroscopy ; thermosets ; interpenetrating polymer networks ; curing reaction ; temperature-modulated differential scanning calorimetry ; glass transition ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dielectric relaxation spectroscopy (3 kHz ≤ ƒ ≤ 3 MHz), differential scanning calorimetry, and temperature-modulated calorimetry have been performed during isothermal curing of an epoxy network (diglycidylether of bisphenol A crosslinked with diaminodiphenyl methane), and of two thermoplast modified epoxy resins (semi-interpenetrating polymer networks) consisting of the epoxy network component and different amounts (10 and 20 wt %) of a linear high Tg polymer (polysulfone or polyethersulfone). During reaction, the homogeneous-mixtures phase separate into an epoxy-rich and a linear polymer-rich phase with different mobilities of the electrical dipoles. The complex dielectric permittivity is composed of a contribution from the ionic dc-conductivity and a contribution from relaxations of the permanent electrical dipoles in the two phases. The decrease of the dc-conductivity in the initial stage of cure is related to the time for gelation or vitrification. The contribution of the dipole relaxations to the dielectric permittivity reflects an increase of the relaxation times with curing time for both phases. The time-dependent changes in the complex dielectric permittivity are described by a simple two-phase model based on two Havriliak-Negami functions combined with Vogel-Fulcher equations for the description of the curing-time dependence of the relaxation times. The increase of the relaxation times in the phases during isothermal curing is incorporated by time-dependent Vogel temperatures. The latter are related to the time evolution of the glass-transition temperatures in the two phases measured independently by calorimetry. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2461-2470, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2483-2492 
    ISSN: 0887-6266
    Keywords: low-density polyethylene ; surface modification of polymers ; scanning force microscopy ; self-assembled monolayer of thiols ; chemical force microscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this article, we present the results of a study on the surface properties of chromic acid-oxidized low-density polyethylene (LDPE) by scanning force microscopy (SFM) and contact angle measurements. LDPE films were surface modified by a chromic acid treatment with subsequent annealing in argon and reconstruction in boiling water as described by Rasmussen, Stedronsky, and Whitesides [J. Am. Chem. Soc., 99, 4736 (1977)]. The LDPE oxidation in chromic acid was monitored in situ by contact mode SFM. Initially stacks of lamellae became exposed, and at later stages a granular morphology was observed. By tapping mode SFM, the sample roughness was shown to increase during the first 10 min of oxidation from initially ca. 20 nm to ca. 50 nm. Gold-coated SFM probes (tips) functionalized with self-assembled monolayers were used to determine the pull-off force characteristics in ethanol. Variations in the contact area between SFM tips and polymer surfaces that exposed sharp crystalline features were shown to obscure the results of pull-off force measurements. However, on annealed and subsequently reconstructed samples with lower roughness, the results of force measurements correlated well with the measured contact angles. Over the range of surface energies studied, the normalized pull-off force between carboxylic acid-modified tips and these smooth samples was shown to depend approximately linearly on the cosine of the contact angle. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2483-2492, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 31-38 
    ISSN: 0887-6266
    Keywords: liquid crystals ; thermosets ; smectic epoxy ; nematic ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Deformation experiments were carried out for densely crosslinked smectic-like networks obtained from diepoxy monomers with twin mesogen architecture. For the initially unoriented smectic networks, the network could be aligned up to an orientation parameter of 0.35 by applying 8 MPa of external stress in the rubbery regime. X-ray diffraction measurements revealed that the deformed smectic network possesses both smectic-A like and smectic-C like structure. It is thought that after extension domains initially oriented parallel to the external stress displayed a smectic-A-like structure, whereas domains initially tilted with respect to the tensile direction showed a stress-induced smectic-C like structure. A smectic network oriented under a.c. electric fields with an orientation parameter of 0.4 had a smectic-A like structure and possessed linear elasticity in the rubbery regime. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 31-38, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 439-445 
    ISSN: 0887-6266
    Keywords: cholesteric order ; electron microscopy ; periodical lamellar structure ; macromolecules ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The macromolecular cholesteric structure in the ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid [AA] cholesteric liquid crystalline solutions is studied by directly observing the morphology and structure of the ethyl-cyanoethyl cellulose [(E-CE)C]/polyacrylic acid [PAA] using electron microscopy. A periodical lamellar structure is observed in ultrathin slices of the composites with cholesteric order by both transmission electron microscopy (TEM) and low-voltage scanning electron microscopy (LVSEM). It is suggested that the periodical lamellar structure is induced by the twist of the molecular orientation in the cholesteric phase and reflects the structural features of the macromolecular cholesteric phase. The macromolecular cholesteric phase exhibits the twisted ring morphology in the initial stage of the formation of the liquid crystalline phase. The swelling of the ultrathin slices with cholesteric order in water is heterogeneous, which suggests the tight packing of the (E-CE)C chains in the direction of the helix axis in the macromolecular cholesteric phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 439-445, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 495-517 
    ISSN: 0887-6266
    Keywords: crystallization ; DSC ; multiple melting ; nascent morphology ; polyethylene ; synchrotron ; UHMW PE ; WAXS ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The nascent morphology of UHMW PE exhibits high melting point, high crystallinity, and increased WAXS line breadth relative to samples formed by melt crystallization. Different empirical relationships between crystal size and melting point are observed for nascent and molded samples. This differentiation is removed following nitric acid treatment of the nascent flake. Solid-state annealing behavior is differentiated by several regimes. Regime I is characterized by increasing crystallite dimensions and crystallinity at low annealing temperatures. Regime II[a] and II[b] is identified by double melting in DSC scans of moldings and nascent flake, respectively. The double melting is due to partial melting with incomplete recrystallization. Regime II[a] of moldings is differentiated from Regime II[b] of flake by an increase in melting point of the higher melting endotherm. Within Regime II[b], the partial melting of the nascent structure is sensitive to the distribution of morphological stability. Regime III is initiated at annealing temperatures approaching the zero heating rate melting point, and shows melting kinetics by DSC or time-resolved WAXS using synchrotron x-ray radiation. The superheat, partially associated with Regime III behavior, is sensitive to morphological heterogeneity and annealing history. Morphological models are discussed which highlight the role of noncrystalline regions and melting kinetics on the melting behavior of nascent form crystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 495-517, 1998
    Additional Material: 29 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 567-572 
    ISSN: 0887-6266
    Keywords: surface ; interfaces ; diffusion ; polystyrene ; polyphenylene oxide ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Symmetric polydisperse (Mw = 23 × 104, Mw/Mn = 2.84) and monodisperse (Mw = 21 × 104, Mw/Mn 〈 1.05) polystyrene (PS), and asymmetric polydisperse PS/poly(2,6-dimethyl 1,4-phenylene oxide) (PPO) interfaces have been bonded in the vicinity of the glass transition temperature (Tg) of PS. In a lap-shear joint geometry, strength develops in all cases with time to the fourth power, which indicates that it is diffusion controlled. Strength developing at short times at the polydisperse PS/PS interface, at 90°C, is higher than that at the monodisperse interface, at 92°C (at Tg - 13°C in both cases), presumably due to the contribution of the low molecular weight species. The decrease of strength at the PS/PPO interface when the bonding temperature decreases from 113 to 70°C, i.e., from Tg + 10°C to Tg - 33°C of the bulk PS, indicates a high molecular mobility at the surface as compared to that in the bulk, and can be expressed by a classical diffusion equation, which is valid above Tg (of the surface layer). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 567-572, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 629-640 
    ISSN: 0887-6266
    Keywords: poly(acrylonitrile) ; two-stage draw ; morphology and tensile properties ; effect of molecular weight ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ultradrawing of atactic poly(acrylonitrile) (PAN) was investigated for a Mv series, ranging 8.0 × 104-2.3 × 106. Samples for the draw were prepared from 0.5-30 wt % solutions of PAN in N,N′-dimethylformamide. The solutions were converted to a gel by quenching from 100 to 0°C. The dried gel films were initially drawn uniaxially by solid-state coextrusion (first-stage draw) to an extrusion draw ratio (EDR) of 16, followed by further tensile draw at 100-250°C (second-stage draw). The maximum total draw ratio (DRt,max) and tensile properties achieved by two-stage draw increased remarkably with sample Mv. Other factors affecting ductility were the solution concentration from which gel was made and the second-stage draw temperature. The effects of these variables became more prominent with increasing Mv. The temperature for optimum second-stage draw increased with sample Mv. Both the initial gel and the drawn products showed no small-angle X-ray long period scattering maximum, suggesting the absence of a chain-folded lamellae structure, which had been found in our previous study on the drawing of nascent PAN powder. The chain orientation function (fc) and sample density (ρs) increased rapidly with DRt in the lower range (DRt 〈 30) and approached constant values of fc = 0.980-0.996 and ρs = 1.177-1.181 g/cm3, respectively, at higher DRt 〉 30-100. The tensile modulus also showed a similar increase with DRt. The tensile strength increased linearly with DRt, reaching a maximum, and decreased slightly at yet higher DRt. The highest modulus of 28.5 GPa and strength of 1.6 GPa were achieved with the highest Mv of 2.3 × 106. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 629-640, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 681-692 
    ISSN: 0887-6266
    Keywords: high-density polyethylene ; nonisothermal crystallization kinetics ; plateau temperature ; regime transition ; crystallinity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The quiescent nonisothermal bulk crystallization kinetics of two high-density polyethylene resins were investigated by a modified light-depolarizing microscopy (LDM) technique. The technique allows studies at average cooling rates up to 2500°C/min. The polymer was found to crystallize at a pseudo-isothermal temperature even at these very high cooling rates. The overall bulk crystallization rate increased rapidly as the cooling rate and supercooling increased. Crystallization kinetics was analyzed by Avrami analysis. Avrami exponents near 3 suggested spherical growth geometry and instantaneous nucleation at predetermined sites. Observation of spherulites by optical microscopy together with a number density of spherulites that changed little with increase in cooling rate or supercooling supported this model of crystallization behavior. Analysis of the half-time of crystallization based on the Lauritzen and Hoffman secondary nucleation theory indicated that the regime II-III transition was found to occur at a degree of supercooling of approximately 22°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 681-692, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 727-741 
    ISSN: 0887-6266
    Keywords: liquid crystal polymer ; aromatic polyester ; molecular modeling ; Monte Carlo ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The condensed phase of the alternating copolyester of p-hydroxybenzoic acid (HBA) and 2-hydroxy-6-naphthoic acid (HNA) is investigated by studying the room temperature packing arrangement of the copolymer chains. A molecular modeling methodology is employed with a Monte Carlo sampling of the configurational phase space. Realistic poly(HBA-alt-HNA) polymer chains are represented by an explicit atom representation of the HBA/HNA dimers. States are sampled from the NVT ensemble using a sampling scheme consisting of (1) valence and torsional variations, (2) rigid body rotations of the chain about the chain axis, and (3) rigid body translations of the chain. The effect of chain packing on the conformation of chains, as well as the relative intra- and intermolecular orientations of aromatic rings, is investigated. Correlation of chain positioning along the chain axis is dominated by aromatic rings maintaining a center-to-center plane of registry. These layers of aromatic units pack with a preference for edge-to-face orientations in a herringbone-type pattern and have an intermolecular ring angle between the pairs of aromatic rings in the unit cell that is ca. 68°. The aromatic rings, on average, are rotated 38° out from the b-c plane. The phenylene rings of these copolyesters are less restricted in their relative orientation in comparison to the naphthalene rings. Intramolecular orientational probability density distributions indicate a preference for staggering the successive aromatic rings along the chain, with a staggering angle of ca. 66°. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 727-741, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 797-803 
    ISSN: 0887-6266
    Keywords: polynorbornene ; gas separation ; membrane ; free volume ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A study of gas transport properties of novel polynorbornenes with increasing length of an aliphatic pendant group R (CH3—, CH3(CH2)3—, CH3(CH2)5—, CH3(CH2)9—) has been performed. These polymers were synthesized using novel organometallic complex catalysts via an addition polymerization route. This reaction route maintained the bridged norbornene ring structure in the final polymer backbone. Gas permeability and glass transition temperature were found to be higher than those for polynorbornenes prepared by ring-opening metathesis and reported in the literature. It was shown that for noncondensable gases such as H2 and He the selectivity over N2 decreased when the length of the pendant group increased, but remained relatively stable for the more condensable gases (O2 and CO2). The permeability coefficient is correlated well to the inverse of the fractional free volume of the polymers. The more condensable gases showed a deviation from this correlation for the longest pendant group, probably due to an increase of the solubility effect. This polymer series demonstrated a simultaneous increase in permeability and selectivity, uncommon for polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 797-803, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1219-1225 
    ISSN: 0887-6266
    Keywords: poly(ethylene terephthalate) ; oligomer ; poly(ethylene glycol) ; epoxy resin ; concentrated solution ; crystallinity ; thermoreversible gel ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Poly(ethylene terephthalate) (PET) was rapidly crystallized through thermoreversible gelation in a liquid ethylene glycol oligomer or in epoxy resin. The solutions formed gel rapidly on cooling. Polarized light microscopy and small-angle light scattering showed that these gels contain large, regular PET spherulites. The gels may be formed by two consecutive processes: the phase separation and crystallization, and gelation by formation of a three-dimensional PET network in the oligomer solvents, where the nodes of the network are PET spherulites. The crystallinity of PET recovered from polymer/oligomer gels is near 72% measured by wide-angle X-ray diffraction method, which is about 20% higher than PET samples crystallized by solution crystallization in small molecule solvent, high temperature annealing, and stretching techniques. It takes only a few minutes to form the highly crystalline phase PET in the PET/oligomer system, and the crystallinity of the dried gel is independent of the concentration of the original solution. Excimer-fluoresence and Raman spectroscopic studies indicated that PET recovered from the gels are in an ordered state with few chain entanglements. The entanglement density of the recovered PET recovered from a 20 wt % solution in ethylene glycol oligomer is as low as that of freeze-extracted PET from a 0.5 wt % solution in phenol. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1219-1225, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 373-381 
    ISSN: 0887-6266
    Keywords: pressure-sensitive adhesive ; PSA ; tackifier ; tack adhesion ; polyisoprene ; poly(ethylene-propylene) ; pulsed gradient spin echo-nuclear magnetic resonance ; PGSE-NMR ; diffusion ; n-butyl ester of abietic acid ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A detailed study of the mobility of a tackifying resin in a pressure-sensitive adhesive (PSA) has been done for the first time. The objective of this work is to relate changes in adhesive performance with tackifier loading to tackifier mobility. Tackifiers are low-molecular weight resins that improve the overall performance of PSAs. They increase the adhesive tack or the ability to form a bond of measurable strength after brief contact under slight applied pressure. In this study the diffusion of n-butyl ester of abietic acid (n-BEAA) in either polyisoprene (PI) (Mw = 195,000 Mw/Mn ∼ 1.05) or poly(ethylene-propylene) (PEP) (Mw = 40,000 Mw/Mn ∼ 2.30) was measured by Pulsed Gradient Spin Echo-Nuclear Magnetic Resonance (PGSE-NMR) as a function of both tackifier concentration and temperature. The concentration dependence of the tackifier's diffusion coefficient was weak for both systems. The weak variation in mobility with composition for the PI/n-BEAA system was consistent with that system's weak variation in tack with composition. On the other hand, blends of PEP/n-BEAA showed only modest variation in mobility, even though these adhesive systems showed appreciable enhancement of tack at intermediate compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 373-381, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1321-1334 
    ISSN: 0887-6266
    Keywords: gloss ; rough surface ; specular reflectance ; correlation length ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A general expression for gloss within the scalar Kirchhoff's theory is derived in terms of the detector collecting angle, and two statistical parameters that characterize the surface roughness. Analytical expressions for gloss are derived for an exponential and a Gaussian correlation function, and numerical results for these and other quasi-exponential correlation functions are presented. It is shown that the incoherent contribution to gloss is significant in common polymeric surfaces. The latter implies that surface height correlations cannot be neglected in the evaluation of gloss. It is also shown that for a correlation function with a single characteristic length, gloss scales with the correlation length Lc in the same way as with the detector collecting angle. This fact can be used to determine Lc with a glossmeter, and an experimental method to achieve this is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1321-1334, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1361-1370 
    ISSN: 0887-6266
    Keywords: transcrystallinity ; PTFE fiber/PP composites ; heterogeneous nucleation ; crystal growth rate ; orientation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effect of shear rates on the transcrystallization of polypropylene (PP) on the polytetrafluoroethylene (PTFE) fibers has been quantitatively investigated using a polarized optical microscope equipped with a hot stage and a tensile testing machine. The PTFE fibers were pulled at different rates, from 0.17 to 8.33 μm/s, to induce a range of shear rates, about 0.02 to 1.16 1/s, in the PP melt adjacent to the fiber. The induction time, nucleation rate, and saturated nucleation density at the fiber surface were determined at various crystallization temperatures. It was found that both the nucleation rate and the saturated nucleation density increase with increasing shear rates. However, the induction time is significantly reduced. Based on the theory of heterogeneous nucleation, the interfacial free energy difference functions Δσ;TCL of PP on PTFE fibers at different levels of shear rates were determined and compared with that obtained from crystallization under quiescent conditions. Results showed that the magnitude of ΔσTCL decreased to be about one-third of that for the quiescent crystallization, when a shear rate of 1.16 1/s was applied. The application of a shear stress to the supercooled PP melt by fiber pulling leads to enhance the development of transcrystallinity. Moreover, both the thickness and the crystal growth rate of transcrystalline layers were found to increase with the increasing rate of fiber pulling, especially at low crystallization temperatures where regime III prevails (see text). Surface morphology of PTFE fibers was revealed using a scanning electron microscope and an atomic force microscope. It is argued that the presence of fibrillar-type features at the fiber surface is the main factor responsible for the development of transcrystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1361-1370, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 483-494 
    ISSN: 0887-6266
    Keywords: small penetrants ; sorption isotherms ; site distribution ; elastic distortion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pressure-composition isotherms were determined at 20°C for CO2 in Kapton and various substituted polycarbonates and for H2O, Ar, N2, CH4, and acetone in bisphenol-A-polycarbonate. The isotherms are described by two parameters an average free energy of sorption and a width of a Gaussian distribution of free sorption energies. Within the framework of a recent model these parameters can be calculated assuming an elastic distortion of the polymer caused by the incorporation of solute atoms in preexisting holes. By comparing experimental values with predictions of the model the experimental width of the free energy distribution is only 30% smaller than the theoretical one. Functional relationships are obeyed between the sorption parameters on the one hand and glass transition temperature, average hole volume, and molecular volume of the solute on the other hand. Deviations occur for larger molecules like acetone and ethylene which are attributed to a viscoelastic distortion of the polymer. Comparing free energies of solution for the rubbery and glassy state of the polymer reveals more negative values for the glassy polymers despite their extra elastic distortion energy. This discrepancy is overcome by taking into account that the occupied volume has to be re-formed in the case of the rubbery or liquid polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 483-494, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1451-1463 
    ISSN: 0887-6266
    Keywords: bulk modulus ; heat capacity ; high-pressure ; poly(vinyl acetate) ; thermal conductivity ; transient hot-wire method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal conductivity λ and heat capacity per unit volume of poly(vinyl acetate) (260 kg mol-1 in weight average molecular weight) have been measured in the temperature range 150-450 K at pressures up to 1 GPa using the transient hot-wire method, which yielded λ = 0.19 W m-1 K-1 at atmospheric pressure and room temperature. The bulk modulus K has been measured in the temperature range 150-353 K up to 1 GPa. At atmospheric pressure and room temperature, K = 4.0 GPa and (∂K/∂p)T = 8.3. The volume data were used to calculate the volume dependence of λ, \documentclass{article}\pagestyle{empty}\begin{document}$g = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T .$\end{document} The values for g of the liquid and glassy states were 3.0 and 2.7, respectively, and g of the latter was almost independent of volume and temperature. Theoretical models can predict the value for g of the glassy state to within 25%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1451-1463, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1483-1500 
    ISSN: 0887-6266
    Keywords: dilute polystyrene solution ; flow birefringence ; transient elongational flow ; local orientation angle ; polymer molecular weight ; affine deformation model ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Transient elongational flow, created by forcing a polymer solution across a narrow contraction, is characterized by a high strain rate of limited duration. Due to an inherent short residence time, this type of flow generally is considered as being less efficient in extending isolated flexible molecular coils than “stagnation” point elongational flow. Rheo-optical measurements revealed, nevertheless, a readily detectable birefringence zone above a critical strain rate in the immediate orifice entrance. Birefringence was studied for dilute PS solutions (100-400 ppm) in decalin as a function of fluid strain rate (\documentclass{article}\pagestyle{empty}\begin{document}$\dot \varepsilon $\end{document} = 1000-38,000 s-1) and polymer molecular weight (M = 1.93-10.2·106). Transient elongational flow is complicated by the presence of local orientation distribution along the different streamlines. To account for this effect, a numerical technique has been devised to compute local birefringence (Δn) from experimental retardation (δ). Results show a uniform birefringence distribution across the capillary entrance and a steep decrease with the axial distance. Molecular extension ratio calculated with the Kuhn-Grün theory suggests that polymers may uncoil up to one third of the chain contour length at the approach of capillary entrance. Although extension ratio determined at the inlet could be fitted with an affine deformation model, notable departure from this simple representation is observed when molecular strain is calculated along the streamline. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1483-1500, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1547-1556 
    ISSN: 0887-6266
    Keywords: gas permeation ; plasticization ; semiinterpenetrating polymer network ; polyimide ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547-1556, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1579-1590 
    ISSN: 0887-6266
    Keywords: infrared spectroscopy ; polymer blends ; poly(vinyl cinnamate) ; UV curing ; hydrogen bonds ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The results of an infrared spectroscopic characterization of poly(vinyl cinnamate) (PVCIN) and its blends with poly(4-vinyl phenol) (PVPh) are reported before and after photo-crosslinking the PVCIN by exposure to UV radiation. The purpose of this article is to demonstrate methodology, and it is shown that quantitative analysis of the fraction of unsaturated (—C=C—) double bonds, “free” (non-hydrogen bonded) and hydrogen bonded unsaturated (—CO—C=C—) and saturated (—CO—C—C—) acetoxy carbonyl groups is feasible in these blends as a function of UV exposure time. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1579-1590, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1617-1624 
    ISSN: 0887-6266
    Keywords: hydrogen-bonded living polymers ; supramolecular ; liquid crystalline polymers ; X-ray scattering ; Fourier transform infrared (FTIR) ; structure ; association chain polymers ; self-assembly ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A main chain hydrogen-bonded liquid crystalline polymer was formed by melt mixing two complementary components, A and B, which in their individual states do not exhibit liquid crystallinity. The structure of the polymer and the thermal stability of its mesophase were studied using synchrotron radiation SAXS/WAXS/DSC at Daresbury (UK) and by variable temperature Fourier transform infrared. The chain extension, or “polymerization” process, was accelerated at the point when the polymer formed a liquid crystalline phase upon cooling from the isotropic melt. The polymer has an aabb chain structure and forms a smectic layer with a length of the A-B repeating unit. The hydrogen-bonded main chain polymer studied here is a monotropic liquid crystal. Above 150°C, it exhibits kinetic stabilization of its monotropic smectic phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1617-1624, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1703-1711 
    ISSN: 0887-6266
    Keywords: complex shear modulus ; ultrasonic measurements ; dynamic-mechanical measurements ; acrylic-type copolymers ; film formation ; glass-rubber relaxation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: An ultrasonic shear wave reflection method was applied to study film formation and temperature dependence of the complex shear modulus (G*=G′ + iG″) in different amorphous films made of aqueous dispersions of acrylic-type copolymers. The data are compared with dynamic-mechanical measurements in the low frequency range. It is shown that the temperature dependence of the storage (G′) and the loss modulus (G″) for both methods can be fitted by the same set of parameters using the Havriliak-Negami function incorporating the Vogel-Fulcher-Tamman-Hesse equation for the temperature dependence of relaxation times. The temperature dependence of the relaxation times obtained from the fits to the ultrasonic shear modulus is compared to the shift factors of the dynamic-mechanical measurements. The agreement between both methods is good. This suggests an almost thermorheological simplicity of the samples for the main glass-rubber relaxation and demonstrates the capacity of the ultrasonic rheometer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1703-1711, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1679-1694 
    ISSN: 0887-6266
    Keywords: crystallization kinetics ; thermotropic liquid crystalline polymers ; polyimide ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253-258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be -2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220-230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3-0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230-240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679-1694, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 901-911 
    ISSN: 0887-6266
    Keywords: activation volume ; relaxation ; pressure ; polymer ; reorientation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg - 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901-911, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1769-1780 
    ISSN: 0887-6266
    Keywords: polymer blends ; liquid crystalline polymer ; microfibers ; viscosity reduction ; rheology ; morphology ; X-ray scattering ; composite materials ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Immiscible blends of thermotropic liquid crystalline polymers (TLCP) and a flexible polymer matrix show viscosity reductions and extensive fiber formation under certain flow conditions. Here we study these phenomena by directly examining the TLCP component's molecular orientation and the dispersed phase morphology. The rheology and morphology of blends of polybutylene terephthalate and a thermotropic copolyester (HX-8000 series, DuPont) at concentrations varying from 5 to 30 wt % of TLCP are characterized. It is found that the blends show viscosity reduction as well as stable fiber formation at shear rates dependent on the TLCP content. Wide-angle X-ray scattering is performed to measure the degree of molecular orientation of the TLCP phase. A deconvolution scheme isolates the scattering from the TLCP in the blends and a molecular model enables extracting an experimental orientation factor. It was found that a highly microfibrillated TLCP phase is coupled with an increase in the TLCP molecular orientation to values close to the pure TLCP at similar processing conditions. Further, the microfibrillated TLCP phase is found to be stable within the testing time. Current hypotheses about fiber formation in immiscible blends are tested against the experimental observations. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1769-1780, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1831-1837 
    ISSN: 0887-6266
    Keywords: block copolymer ; wormlike micelle ; fluctuations ; slow mode ; dynamic light scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dynamic light scattering (DLS) has been used to explore the properties of asymmetric styrene-isoprene (SI) block copolymers in concentrated solutions. Concentrations were always well below those necessary to access the order-disorder transition in neutral good solvents. The samples include SI (10-50), SI (36-9), and SIS (10-100-10), where the numerical suffixes denote the block molecular weights in kilodaltons; experimental emphasis was placed on SI (10-50). The DLS intensity correlation functions in the neutral good solvents, THF and toluene, were dominated by a slow mode that first appeared at a concentration c+ ≈ 4 c*, where c* is the coil overlap concentration. The decay rate of this mode scaled approximately as the third power of the scattering wavevector, and the excess scattered intensity decreased with increased scattering angle. These results were tentatively ascribed to the onset of substantial concentration fluctuations, that exhibited cylindrical, or wormlike structures. Measurements in solvents of known selectivity, dioxane and cyclohexane, and on a copolymer of the opposite composition, SI (36-9), indicated that the intermolecular association was driven by the effectively repulsive interactions between styrene and isoprene segments, rather than by solvent selectivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1831-1837, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1857-1872 
    ISSN: 0887-6266
    Keywords: hybrid polymers ; rheology ; reptation ; silsesquioxane polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We report on the viscoelastic behavior of linear thermoplastic nonpolar hybrid inorganic-organic polymers. These materials have been synthesized through copolymerization of an oligomeric inorganic macromer with 4-methylstyrene where the inorganic portion of the material is a well-defined polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(CH2CH2C6H4C=CH2), with R = c-C6H11 or c-C5H9. A series of 4-methyl styrene copolymers with approximately 4, 8, and 16 mol % POSS macromer incorporation were investigated. Rheological measurements show that the polymer dynamics are profoundly affected as the percent of POSS increases. In particular, a high-temperature rubbery plateau develops (where a terminal zone is not observed), despite the fact that the parent poly 4-methylstyrene is unentangled. It is also observed that the thermal properties are influenced as the percent of POSS incorporation increases, with increases in the glass and decomposition temperatures. The results suggest that interchain interactions between the massive inorganic groups are responsible for the retardation of polymer chain motion, a mechanism similar to the “sticky reptation” model conceived for hydrogen-bonded elastomers and developed by Leibler et al. [Macromolecules, 24, 4701 (1991)]. Control over the interchain interactions would also give rise to the observed increases in glass transition and the establishment of a rubbery plateau. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1857-1872, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1911-1918 
    ISSN: 0887-6266
    Keywords: polymer solutions ; supercritical fluids ; non-Newtonian viscosity ; free-volume ; polydimethylsiloxane ; carbon dioxide ; viscoelastic scaling theory ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Recent measurements of the viscosity of polydimethylsiloxane (PDMS) melts swollen with dissolved carbon dioxide at 50 and 80°C by Gerhardt et al. have shown that classical viscoelastic scaling factors can be employed to superpose the viscosity curves for CO2-swollen melts onto the viscosity curve for pure PDMS at the same temperature and pressure. Here a free volume expression for the viscosity of a diluted polymer melt is combined with equation-of-state theories for the volumetric properties of PDMS-CO2 mixtures to develop models for the CO2 concentration-dependent viscoelastic scaling factors. Both the Sanchez-Lacombe and Panayiotou-Vera equations-of-state are investigated for this purpose. The predicted viscoelastic scaling factors are found to be in very good agreement with the data of Gerhardt et al. The model predictions show that mixing of gaseous carbon dioxide into the swollen PDMS phase is highly non-ideal, and that significant free volume is added to the melt upon carbon dioxide dissolution. The free volume added to the melt by dissolved carbon dioxide is the principal mechanism for viscosity reduction, relative to pure PDMS, in this system. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1911-1918, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1947-1958 
    ISSN: 0887-6266
    Keywords: interfacial tension ; breaking thread ; polyamide ; polyethylene ; interface ; modifier morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Compared to the dynamic mixing process used in melt blending operations, most techniques for measuring the interfacial tension can be considered as virtually static. For this reason, in order to measure the interfacial tension of an A-B immiscible system in the presence of an interfacial modifier, the problem of migrating the modifier to the interface is a central issue. In this study, the influence of the addition of an interfacial modifier, a polyethylene copolymer ionomer, on the interfacial tension between two high-density polyethylenes and a polyamide is investigated. The breaking thread method is used and the interfacial tension is measured as a function of ionomer content. In order to enhance the likelihood of placing the modifier in closer proximity to the interface, various sample preparations are compared. In all cases, the interfacial tension significantly drops with increasing ionomer content and tends to a limiting value. It is shown, however, that the preparation of the system for the breaking thread experiment via coextrusion using a conical die brings the modifier in closest proximity to the interface. With this approach an additional 1.45 times reduction of the interfacial tension at 10% compatibilizer concentration (based on the mass of HDPE) is observed compared to the classical technique of preparation. Confirmation of this effect is demonstrated using X-ray photoelectron spectroscopy where analysis of the thread surface of the system prepared by coextrusion indicates a more than fourfold enrichment of interfacial modifier. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1947-1958, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1995-2003 
    ISSN: 0887-6266
    Keywords: semiflexible polymers ; persistence length ; viscosity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A numerical approach, based on the configurational distribution function of a polymer chain in flow, has been used to calculate the zero-shear rheological properties. Starting from a bead-spring representation of the chain, the stiffness is introduced by repulsive springs between next-nearest neighbors. The connection to models based on the bending equation and their limitation is discussed. To obtain a correct model of a semiflexible chain, an inhomogeneous spring constant has to be used. Calculations have been carried out for the free draining case, and a simple relation between the intrinsic viscosity, the translational diffusion coefficient and the persistence length for arbitrary solvent conditions is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1995-2003, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1987-1994 
    ISSN: 0887-6266
    Keywords: toughening ; impact strength ; blend ; nylon 6 ; core-shell impact modifier ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Super-tough nylon 6 was prepared by using maleic anhydride grafted polyethylene-octene rubber/semicrystalline polyolefin blend (TPEg) as an impact modifier. The morphology, dynamic mechanical behavior, mechanical properties, and toughening mechanism were studied. Results indicate that TPEg with a semicrystalline polyolefin core and a polyethylene-octane rubber shell, possesses not only a better processability of extruding and pelletizing with a lower cost, but also an improved toughening effect in comparison with the maleated pure polyethylene-octene rubber. The shear yielding is the main mechanism of the impact energy dissipation. In addition, the influence of melt viscosity of nylon 6 on toughening effectiveness was also investigated. High melt viscosity of matrix is advantageous to the improvement of notched Izod impact strength. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1987-1994, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2019-2024 
    ISSN: 0887-6266
    Keywords: divinylbenzene ; porous copolymer ; excess adsorption isotherm ; active centers ; adsorption azeotropic point ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The adsorptive properties of four porous copolymers were investigated. They contained different functional groups in the internal structure. Adsorption measurements were made using the static method. Three two-component and one three-component solutions with different physicochemical properties were used. The adsorptive centers of the copolymers were evaluated based on the analysis of excess adsorption isotherms of the polar solution component. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2019-2024, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2057-2067 
    ISSN: 0887-6266
    Keywords: PTFE ; fillers ; UV radiation ; degradation ; morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The first part of a series of two, this paper analyzes the degradation of pure and filled PTFE under high energy UV radiation. The polymer morphology is first investigated using differential scanning calorimetry, highlighting the respective nucleating efficiency of TiO2 and CaF2 during polymer crystallization. Then, the various polymers are exposed to excimer laser radiation and observed under an optical microscope. The results indicate that the degradation is closely connected with microstructural parameters. In pure PTFE, scattering by crystallites and reflection on piles of lamellae control the nature and extent of the degradation. In filled PTFE, nature and concentration of fillers are the most important features governing degradation. When absorbing particles are added to PTFE, the damage is restricted to the surface and photothermal processes can modify the degradation from heterogeneous to ablative, depending on the filler content. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2057-2067, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2103-2109 
    ISSN: 0887-6266
    Keywords: ethylene-vinyl alcohol copolymers ; multiple-pulse proton NMR ; spin diffusion ; comonomer content ; crystallinity ; long spacing ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Capitalizing on the superior sensitivity of proton NMR, relatively rapid estimates of three parameters, namely, comonomer content, crystallinity, and long spacing, are determined for three ethylene/vinyl alcohol copolymers using solid-state proton NMR measurements. Multiple-pulse techniques are utilized (a) in conjunction with magic angle spinning for measuring comonomer content, (b) in conjunction with a T1xz relaxation measurement for determining crystallinity, and (c) in conjunction with a T1xz-based spin diffusion measurement for determining the long spacing. These three parameters, extracted from data collected in a total spectrometer time of about 20 min, are compared with similar parameters obtained using more conventional DSC, SAXS (including synchrotron), and solution-state NMR measurements. Agreement is found to be good. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2103-2109, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1393-1399 
    ISSN: 0887-6266
    Keywords: PNLC ; UV cure ; polyurethane acrylate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polymer network liquid crystals (PNLC) have been prepared from ultraviolet-curable polyurethane acrylate (PUA) and a nematic liquid crystal mixture (BL002). Effects of monoacrylate type on film morphology, temperature-dependent off-state transmittance, and electro-optic performance of the film have been studied. Among three types of monoacrylates incorporated (EHA(2-ethyl hexyl acrylate), MMA (methylmethacryalte), NVP (N-vinylpyrrolidone)), EHA-based PUAs gave the greatest polymer-LC phase separation, lowest threshold (V10), and operating (V90) voltages, and the effect was more pronounced in monoacrylate/triacrylate systems than in monoacrylate/diacrylate systems. Contact angle measurement offers a clue to the observed morphology and electro-optic behavior. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1393-1399, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1419-1422 
    ISSN: 0887-6266
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1443-1450 
    ISSN: 0887-6266
    Keywords: poly(ethylene terephthalate) ; STEM ; dark field imaging ; chemical derivatization ; morphology ; semicrystalline ; amorphous ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Important chemical and mechanical properties in semicrystalline polymers are determined by the noncrystalline or nonordered regions. Hence, characterizing these regions is important in developing a morphological model to better define and predict the chemical and mechanical behavior of polymeric materials. With this objective, preferential tagging was accomplished by covalent linking of a heavy element to poly(ethylene terephthalate) (PET). In scanning transmission electron microscopy (STEM), contrast was obtained using a low concentration of thallium (0.4%), the tagging element, thus providing a map of the more accessible regions within the semicrystalline structure. Differential scanning calorimetry (DSC) and wide-angle x-ray scattering (WAXS) were used to characterize the PET film. Elemental analysis using energy dispersive x-ray analysis (EDAX) was used to confirm the presence of the heavy element in the tagged regions. The STEM imaging results were then compared with the characterization results from the DSC and WAXS measurements to gain an understanding of the domains and their size ranges in the semicrystalline microstructure of PET. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1443-1450, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1501-1506 
    ISSN: 0887-6266
    Keywords: intrachain coil-to-globule transition ; interchain aggregation ; laser light scattering ; poly(N-isopropylacrylamide) ; single-chain nanoparticle ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The coil-to-globule transition of two poly(N-isopropylacrylamide) (PNIPAM) ionomers with different ionic contents (0.8 and 4.5 mol %), but similar weight average molar masses, in deionized water was investigated by a combination of static and dynamic light scattering. In spite of the large difference in their ionic contents, both the ionomers have a nearly same lower critical solution temperature (LCST, ∼ 32.5°C). At temperatures higher than the LCST, the ionomer chains undergo a simultaneous intrachain coil-to-globule transition and interchain aggregation to form nanoparticles thermodynamically stable in water. The average size of the nanoparticles decreases respectively as the ionic content increases and the ionomer concentration decreases. The interchain aggregation can be completely suppressed in an extremely dilute ionomer solution (〈 ∼ 5 × 10-6 g/mL), so that the intrachain coil-to-globule transition leads to the collapse of the ionomer chains into individual single-chain nanoparticles. Our results clearly indicate that there is a hysteresis in the colling process (the globule-to-coil transition). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1501-1506, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2069-2083 
    ISSN: 0887-6266
    Keywords: PTFE ; fillers ; UV radiation ; degradation ; multiple scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The second part of the series, this article analyzes the way UV light propagates through pure and filled PTFE. We investigated the diffusiveness of the semicrystalline matrix as well as the effect of scattering and absorbing fillers (CaF2 and TiO2) on the attenuation. The UV-visible absorption curves have been determined by spectrophotometry. A theoretical calculation based on a four-flux multiple scattering approach allowed us to satisfactorily reproduce the experimental results, highlighting the respective importance of the coherent and the diffuse fields. In light of this model, we discuss the influence of multiple scattering on the extent of degradation when PTFE is exposed to a high energy UV radiation. This approach provides of a comprehensive view of the damaging effect of UV light on PTFE, showing a good agreement with the experimental results of the previous article. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2069-2083, 1998
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2111-2128 
    ISSN: 0887-6266
    Keywords: orientation ; physical aging ; free volume ; glass-transition ; dilatometry atactic-polystyrene ; bisphenol A polycarbonate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: It has recently been demonstrated that hot-drawn samples of bisphenol A polycarbonate (PC) have a 50% higher volume relaxation rate than their isotropic counterpart even though the oriented samples have a lower initial free volume (i.e., higher density).1 In an attempt to better understand this paradox, samples of unaged, hot-drawn PC were characterized thermodynamically and kinetically as a function of orientation. Heat capacity, hole energy, and Tg data indicate that the chain mobility is actually decreasing slightly with orientation, possibly due to the hindered motion brought about by tighter packing, stronger intermolecular bonding, and reduced free volume. Nonetheless, this decrease in localized mobility is in contradiction to the enhanced volume relaxation rates observed for the oriented samples. In contrast, dynamic mechanical data indicate an increase in the relaxation strength of the β-transition (-100°C at 1 Hz) upon stretching for both the stretch and transverse directions. This implies that more segments are actively participating in the relaxation process for the oriented samples even though their individual localized mobility might be slightly lower. The net result is an increase in “effective” mobility for the oriented samples. It is conjectured that the enhanced relaxation strength of the oriented samples is a result of the stretching process somehow activating more of the chains into a higher energy state, and may be related to the physical aging concept of stress-induced rejuvenation/acceleration. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2111-2128, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1625-1636 
    ISSN: 0887-6266
    Keywords: mechanical behavior ; block copolymers ; affine strain ; SAXS ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Films of a blend of styrene-isoprene triblock copolymer and mineral oil have been simple-cast and roll-cast from a toluene solution. Their microstructure has been analyzed by transmission electron microscopy and small-angle X-ray scattering. The blend formed polystyrene spheres arranged on a body-centered cubic lattice in a matrix composed of polyisoprene and mineral oil, and the samples display large grain sizes and very long-range order. The roll-cast sample exhibits approximately uniaxial symmetry around the rolling direction, which corresponds to the [111] crystallographic direction of the lattice. The glassy spheres act as physical crosslinks of known crosslinking functionality in the soft rubbery matrix. The high-strain deformation mechanism of this oriented cubic material has been studied by a simultaneous tensile-SAXS experiment, where the sample was stretched up to 300% along the [111] direction. By monitoring the position of the (222) and (110) reflections, the deformation of the lattice is shown to be affine with the macroscopic deformation of the sample, and the Poisson's ratio is approximately 0.46. The first zero of the sphere form factor in the SAXS patterns remains also essentially unchanged up to 300% deformation indicating that the reinforcing glassy PS domains retain their spherical shape throughout the deformation. Deformation of the microstructure is totally reversible upon unloading. A model of {hk0} faults is proposed to describe the microstructural changes induced by high-strain deformation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1625-1636, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1669-1677 
    ISSN: 0887-6266
    Keywords: photo-assisted poling ; polymer dynamics ; polymer structure ; nonlinear optical polyimides ; high glass transition temperature ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have used combinations of light, heat, and electrostatic fields to investigate the orientation of nonlinear azo-chromophores chemically incorporated into high glass transition temperature (Tg) polyimides. A number of nonlinear optical polyimides have been synthesized in which the interaction between the nonlinear optical chromophore and the polymer main chain was systematically altered to determine to what extent this steric interaction influences the orientation of the nonlinear chromophore. Chromophores in polymers may be oriented by a number of methods: (a) polarized light at room temperature (i.e., photo-induced orientation or PIO), (b) polarized light and electric fields (i.e., photo-assisted poling or PAP) at temperatures ranging from room temperature to the polymer Tg, and (c) electric fields at Tg (thermal poling). While thermal poling and PIO are usually possible, PAP depends strongly on the molecular structure of the polymer. Previously we have shown that PIO can be accomplished at room temperature in a system where the nonlinear chromophore is embedded into the polyimide main chain via the donor substituent, and this orientation can only be thermally erased at temperatures approaching Tg. In this article we show that, whereas photoisomerization can efficiently depole donor-embedded polyimides in a matter of few minutes at room temperature, PAP does not induce any polar order. This behavior is in marked contrast to a structurally related, side-chain, nonlinear polyimide, in which the azo chromophore is tethered via a flexible linkage to the polymer backbone. In this case some PAP occurs even at room temperature, while no PAP is observed for a donor-embedded system with a similar Tg. We suggest that the orientation during PAP below Tg in the side-chain polyimide is primarily due to the movement of the azo side chains, and there is a very little coupling of this motion to the main chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1669-1677, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2691-2702 
    ISSN: 0887-6266
    Keywords: surface segregation ; polyolefin copolymers ; deuterium labeling effect ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have examined the effect of deuterium labeling on surface interactions in mixtures of random olefinic copolymers [C4H8]1-x[C2H3(C2H5)]x. Based on surface segregation data we have determined a surface energy difference χs between pure blend constituents. In each binary mixture components have different fractions x1, x2 of the group C2H3(C2H5), and one component is labeled by deuterium (dx) while the other is hydrogenous (hx). The mixtures are grouped in four pairs of structurally identical blends with swapped labeled constituent (dx1/hx2, hx1/dx2). For each pair the surface energy parameter χs increases when the component with higher fraction x is deuterated, i.e., χs(dx1/hx2) 〉 χs(hx1/dx2) for x1 〉 x2. A similar pattern has been found previously for the bulk interaction parameter χ. This is explained by the solubility parameter formalism aided by the lattice theory relating the surface excess to missing-neighbor effect. χs has also an additional contribution, insensitive to deuterium swapping effect, and related to entropically driven surface enrichment in a more stiff blend component with a lower fraction x. Both enthalpic and entropic contributions to χs seem to depend on the extent of chemical mismatch between blend components. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2691-2702, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2725-2735 
    ISSN: 0887-6266
    Keywords: blending ; polymorphism ; syndiotactic polystyrene (s-PS) ; amorphous polystyrene (a-PS) ; PPO ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725-2735, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2745-2750 
    ISSN: 0887-6266
    Keywords: polymer blends ; hydrogen bonding ; small-angle neutron scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Deuterium-labeled polystyrene modified by random distributions of the comonomer p-(1,1,1,3,3,3-hexaflouro-2-hydroxyisopropyl)-α-methyl-styrene [DPS(OH)] has been blended with poly(butyl methacrylate) (PBMA) and studied with small-angle neutron scattering (SANS). Miscibility is induced via hydrogen bonding between the DPS(OH) hydroxyl group and PBMA carbonyl groups. The data suggest that the nature of the miscible-phase structure in these blends differs from that of the usual homopolymer blends at small scattering angles, which we attribute to the short-range site specific nature of the hydrogen bond interaction. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2745-2750, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2771-2780 
    ISSN: 0887-6266
    Keywords: drying ; semicrystalline polymers ; poly(vinyl alcohol) ; solvent removal ; modeling ; diffusion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The drying mechanism of semicrystalline poly(vinyl alcohol) (PVA) was investigated. PVA samples of various molecular weights were crystallized by annealing at temperatures slightly above the glass transition temperature of PVA, and swollen in water for different time periods. The water volume fraction in the sample was measured using a buoyancy technique. The samples were dried in air at constant temperatures, and the drying kinetics were investigated using thermogravimetric analysis. The change in degree of crystallinity of the swollen polymer during drying was measured by differential scanning calorimetry (DSC) as well as by Fourier transform infrared spectroscopy (FTIR). The degree of crystallinity of the samples increased during drying, which in turn was found to alter the drying rate. The drying kinetics were faster at higher temperatures, for lower molecular weights, and for lower degrees of crystallinity. A mathematical model was developed to predict drying rates of semicrystalline polymers by considering the crystallization kinetics during drying. The model predictions included the thickness of the polymer sample, the degree of crystallinity of the polymer, and the water weight loss as functions of drying time. Model predictions were found to agree reasonably well with the experimental results. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2771-2780, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2793-2803 
    ISSN: 0887-6266
    Keywords: activation volume ; relaxation ; pressure ; nonlinear optical polymer ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of the side-chain copolymer poly(disperse red 1 methacrylate-co-methyl methacrylate) (DR1-MMA). The decay of the SHG signal from poled films of DR1-MMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature (Tg) to 35°C above it. The activation volume, ΔV*, decreased with increasing temperature. The data suggests that the coupling between chromophore reorientation and the long-range motion of the polymer is stronger for the DR1-MMA side-chain system than in previously measured guest-host systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2793-2803, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2829-2833 
    ISSN: 0887-6266
    Keywords: Raman ; LAM ; stress ; polyethylene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The Raman longitude acoustical mode (LAM) study of axially stressed polyethylene-made microfilms gave evidence of the formation of the straight tie molecules localized in two neighboring crystals and in an amorphous layer situated between them. The samples were bicomponent blends composed of polyethylenes with different MW (7 × 104 and 2 × 106). Each MW fraction exhibits an individual LAM band responding to crystals with the size specific to a given fraction. Under tensile stress, the bands shift insignificantly towards an exciting laser line. In addition, the LAM localized on all-trans sequencies with the length exceeding the mean crystallite size appear in the spectrum of a stressed sample. The reversibility of these spectral changes depends on the draw ratio of samples. We conclude the effect is due to stress-induced gauch-to-trans transformations taking place in the amorphous layers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2829-2833, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2849-2863 
    ISSN: 0887-6266
    Keywords: nylon oligoamides ; new crystal structure ; morphology ; crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Three-amide oligomers of nylon 6 and nylon 6 6 have been investigated using electron microscopy (imaging and diffraction), X-ray diffraction, and computational modeling. A new crystal structure has been discovered for the three-amide oligomer of nylon 6. This material crystallizes from chloroform/dodecane solutions into an unfolded crystal form that has progressively sheared hydrogen bonding in two directions between polar (unidirectional) chains. This structure is quite different from the usual room temperature α-phase structure of chain-folded nylon 6 crystals, in which alternatingly sheared hydrogen bonding occurs between chains of opposite polarity in only one direction. The occurrence of this new structure illustrates the extent to which progressively sheared hydrogen bonding is preferred over alternatingly sheared hydrogen bonding. Indeed, the progressive hydrogen bonding scheme occurs in the three-amide nylon 6 material even though it requires a disruption to the lowest potential energy all-trans conformation of the chain backbone, and requires all the chains in each hydrogen-bonded layer to be aligned in the same direction. We believe the presence of chain folding, which necessarily incorporates adjacent chains of opposite polarity into the crystal structure, prevents the formation of this new crystal structure in the nylon 6 polymer. In contrast, the three-amide nylon 6 6 crystal structure is analogous to the polymeric nylon 6 6 α-phase structure, found in both fibers and chain-folded crystals, and consists of progressive hydrogen-bonded sheets which stack with a progressive shear. In both structures, the molecules (≈ 3 nm in length) form smectic C-like layers with well-orchestrated stacking of 2.2 nm to form a three-dimensional crystal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2849-2863, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2267-2274 
    ISSN: 0887-6266
    Keywords: poly(ether ether kotone) ; polyimide ; miscibility ; crystallization ; morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2267-2274, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2301-2309 
    ISSN: 0887-6266
    Keywords: discrete dynamic compliance spectra ; nonlinear viscoelasticity ; creep ; stress relaxation ; constant strain rate tests ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The present work reports a discrete, stress-dependent dynamic compliance spectra method which may be used to predict the mechanical response of nonlinear viscoelastic polymers during strain-defined processes. The method is based on the observation that the real and complex parts of the discrete dynamic compliance frequency components obtained from creep measurements are smooth, easily fit functions of stress. Comparisons between experimental measurements and model calculations show that the model exhibits excellent quantitative agreement with the basis creep measurements at all experimental stress levels. The model exhibits good quantitative agreement with stress relaxation measurements at moderate levels of applied strain. However, the model underestimates the experimental stress relaxation at an applied strain of 3.26%. The stress relaxation error appears to be a real material effect resulting from the different strain character of creep and stress relaxation tests. The model provides a good quantitative agreement with experimental constant strain rate measurements up to approximately 4% strain, after which the model underestimates the experimental flow stress. This effect is explained by the time dependence of the stress-activated configurational changes necessary for large strains in glassy polymers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2301-2309, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2737-2743 
    ISSN: 0887-6266
    Keywords: high-temperature zone-drawing ; high-tension multiannealing ; nylon 46 fiber ; high-modulus ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 46 fibers produced by the high-temperature zone-drawing treatment were treated by repeating high-tension annealing treatments, that is, a high-tension multiannealing (HTMA) treatment to improve their tensile properties. The HTMA treatment was carried out at a repetition time of 10 times and treating temperature of 110°C under high tension (538.2 MPa) close to the tensile strength at break. Although the HTMA treatment was carried out at 110°C, which is much lower than the crystallization temperature of 265°C for nylon 46, the degree of crystallinity increased up to 59%. The orientation factor of crystallites increased dramatically up to 0.949 by the first high-temperature zone-drawing treatment and slightly during the subsequent treatments. This observation indicated that the orientation of crystallites due to slippage among molecular chains did not occur during the HTMA treatment. The treatments shifted the melting peak to slightly higher temperatures, and the HTMA fiber has a melting endotherm peaking at 285°C. The fiber obtained finally had a storage modulus of 12.5 GPa at 25°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2737-2743, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2761-2769 
    ISSN: 0887-6266
    Keywords: protein folding ; Lyapunov exponents ; computer simulations ; nonlinear dynamics ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A lattice model with Monte Carlo dynamics is used to carry out computer simulations of protein dynamics on a four α-helix bundle. The interaction energies in the model can be set so that either the helix bundle structure remains relatively stable or changed so that it unfolds. The computer model produces output that simulates experimental measurements relating to the structure. We show how this output can be used with analytical techniques of nonlinear dynamics to obtain important information about the complex underlying protein dynamics. Time-delay reconstruction plots of structural parameters of unfolding bundles resemble strange attractors in a space of dimension 3-4. We calculate Lyapunov exponents for these unfolding runs and find positive Lyapunov exponents implying chaotic dynamics. For stable runs the Lyapunov exponents are close to zero. We use these Lyapunov exponents to calculate the rate of loss of structural information during the unfolding process and show how the approach may be useful for investigating the folding dynamics of proteins. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2761-2769, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2805-2810 
    ISSN: 0887-6266
    Keywords: poly(dimethylsiloxane) ; DSC ; raman spectra ; thermal history ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Poly(dimethylsiloxane) was studied by laser Raman spectroscopy and differential scanning calorimetry. The Si—O—Si skeletal mode at 489 cm-1 and the C—Si—C deformation bands at 188 cm-1 and 158 cm-1 were studied as functions of temperature from ambient to -130°C, and effects of temperature interpreted in accordance with results from thermal analysis. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2805-2810, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2821-2827 
    ISSN: 0887-6266
    Keywords: polypropylene ; composites ; gamma phase ; epitaxy ; X-ray scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A method for crystallizing oriented samples of the γ-phase of isotactic polypropylene (iPP) under atmospheric pressure in the presence of nucleating fibers has been developed. The technique uses iPP grades of high molecular weight and high isotacticity and produces a mixture of α and γ-phase crystals within the matrix of both pitch-based carbon and Kevlar®-reinforced composites. Two-dimensional wide-angle X-ray scattering (WAXS) patterns from these samples show that the content of the γ-phase decreases as the fiber loading in the composites decreases, suggesting that the γ-phase is directly nucleated by the fibers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2821-2827, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2835-2848 
    ISSN: 0887-6266
    Keywords: dielectric spectroscopy ; interfacial polarization ; Debye length ; particle size ; polymer blends ; laminates ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this article we will focus on the dielectric properties of laminates and blends of a partially conducting (the liquid crystalline copolyesteramide Vectra B950) and an insulating (polypropylene or mica) phase. Dielectric spectroscopy was used as a tool to obtain information about the influence of the dimensions of the conducting phase in these laminates and blends. With decreasing thickness of the conducting layer in the laminates, the measured permittivities deviate more and more from the values predicted using conventional dielectric mixture models. From this discrepancy it is possible to calculate the thickness of the charge layer (=Debye length) in the conducting phase and the thickness of this phase itself, using a model derived by Trukhan. This model incorporates not only conduction, but also diffusion of the charges. Similar experiments were performed on a system of Vectra B950 particles in a polypropylene matrix. After the derivation of a new model, which combines the Trukhan model for space charges with the Böttcher equation for dielectric mixtures, we could make a distinction between samples containing large and small particles. For samples containing small particles, it is even possible to determine the variation in particle sizes. However, the use of a Debye length of 1.1 µm obtained from the laminates resulted in particle sizes that were two times higher than the actual values. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2835-2848, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2869-2876 
    ISSN: 0887-6266
    Keywords: cyclopentadiene ; resins ; carbon yields ; carbon-carbon composites ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A series of thermosetting resins were synthesized via phase transfer reaction of allyl chloride and propargyl bromide with cyclopentadiene in the presence of a strong base. Feed ratios of 1 : 1, 3 : 1, and 5 : 1 allyl chloride to propargyl bromide were used to give resins with varying amounts of propargyl and allyl functionality. In all cases the resins could be thermally cured, without added catalyst, at temperatures below 275°C to give black, glassy, brittle materials with densities of 1.15. TGA evaluation of the resins, with heating to 1000°C, resulted in carbon yields ranging from 48 to 66% with increasing propargyl functionality causing increased values. Physical mixtures of ACP and PCP resins were also made and evaluated. Cure of the mixed materials also occurred below 275°C, and carbon yields were comparable to the corresponding APCP resin. APCP/carbon fiber composites gave good mechanical properties with flexural modulus values of 115-130 GPa and flexural strength values of 1000 MPa. Carbonization of 1 : 1 APCP/carbon fiber composites provided materials with interlaminar strength values of approximately 1.14 MPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2869-2876, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2895-2904 
    ISSN: 0887-6266
    Keywords: polyamide 11 ; dynamic rheo-optical spectra ; deformation mechanism ; thermal treatment ; hydrogen bonds ; crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dynamic mechanical analysis, coupled with polarized step-scan FTIR transmission spectroscopy, has been used to monitor the submolecular motional behavior of uniaxially oriented polyamide 11. The dynamic in-phase spectra depend upon the morphology of the samples as well as on the polarization direction of the infrared radiation. The lineshape features of the dynamic in-phase spectra and their relationship to sample deformation are analyzed on the basis of changes of the internal coordinates, the reorientation movement of several functional groups, and the thickness change of the film during the stretching cycle. Dynamic infrared spectra are helpful for deconvolution of overlapping bands on the basis of their different responses to the external perturbation, which sometimes cannot be resolved well by derivative spectroscopy or curve-fitting analysis. The lineshape features have been used to follow microstructural changes after isothermal heat treatment. Near the N—H stretching frequency, two bands at 3270 cm-1 and 3200 cm-1 are resolved and analyzed in terms of Fermi resonance between the N—H stretching fundamental mode and the overtone and combination modes of the amide I and II vibrations. The dynamic response of the N—H stretching mode correlates with the modulation of hydrogen bond strength in uniaxially oriented PA-11. After thermal treatment at the highest temperature (190°C), the dynamic response in this region is mainly caused by the modulation of crystals. In amide I region, three bands at 1680 cm-1, 1648 cm-1, and 1638 cm-1 are separated and assigned to hydrogen bond-free, hydrogen-bonded amorphous, and hydrogen-bonded crystalline regions, respectively. The dynamic responses of the hydrogen-bonded regions are more sensitive to external perturbation. Two components are found in the amide II region, and the band at 3080 cm-1 is assigned to the overtone resonance of the component with perpendicular polarization. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2895-2904, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2941-2947 
    ISSN: 0887-6266
    Keywords: Case II diffusion ; stability ; multidimensional Stefan-like Problem ; asymptotic analysis ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A well-known model of one-dimensional Case II diffusion is reformulated in two dimensions. This 2-D model is used to study the stability of 1-D planar Case II diffusion to small spatial perturbations. An asymptotic solution based on the assumption of small perturbations and a small driving force is developed. This analysis reveals that while 1-D planar diffusion is indeed asymptotically stable to small spatial perturbations, it may exhibit a transient instability. That is, although any small perturbation is damped out over sufficiently long times, the amplitude of any perturbation initially grows with time. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2941-2947, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2961-2970 
    ISSN: 0887-6266
    Keywords: micelle ; blends ; crystallization ; morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The crystallization, morphology, and crystalline structure of dilute solid solutions of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA) in poly(ethylene oxide) (PEO) and PTHF have been studied with differential scanning calorimetry (DSC), X-ray, and optical microscopy. This study provides a new insight into the crystallization behavior of block copolymers. For the dilute PTHF-b-PMMA/PEO system containing only 2 to 7 wt % of PTHF content, crystallization of the PTHF micellar core was detected both on cooling and on heating. Compared the crystallization of the PTHF in the dilute solutions with that in the pure copolymer, it was found that the crystallizability of the PTHF micellar core in the solution is much greater than that of the dispersed PTHF microdomain in the pure copolymer. The stronger crystallizability in the solution was presumably due to a softened PMMA corona formed in the solution of the copolymer with PEO. However, the “soft” micelles formed in the solution (meaning that the glass transition temperatures (Tg) of the micelle is lower than the Tm of the matrix phase) showed almost no effects on the spherulitic morphology of the PEO component, compared with that of the pure PEO sample. In contrast, significant effects of the micelles with a “hard” PMMA core (meaning that the Tg of the core is higher than the Tm of the PTHF homopolymer) on the nucleation, crystalline structure, and spherulitic morphology were observed for the dilute PTHF-b-PMMA/PTHF system. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2961-2970, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3017-3023 
    ISSN: 0887-6266
    Keywords: liquid crystalline polymer ; shear alignment ; thermotropic polymer ; small-angle neutron scattering ; flow-induced structure ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Small-angle neutron scattering is utilized to determine the flow induced alignment of a model thermotropic liquid crystalline polymer (LCP) as a function of shear rate and temperature. The results demonstrate that the flow-induced structures in thermotropic liquid crystalline polymers have similarities and differences to those in lyotropic liquid crystalline polymer solutions. The shear rate dependence of the alignment shows that the flow-induced alignment correlates very well to the viscosity behavior of the LCP in the shear thinning regime, while temperature variation results in a change in the extent of alignment within the nematic phase. Relaxation results also demonstrate that the flow-induced alignment remains essentially unchanged for up to an hour after the shear field has been removed. Last, there exists a regime at low shear rate and low temperature where alignment of the LCP molecule perpendicular to the applied shear flow is stable. These results provide important experimental evidence of the molecular level changes that occur in a thermotropic liquid crystalline polymer during flow, which can be utilized to develop theoretical models and more efficiently process thermotropic polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3017-3023, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...